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Motivation:

Fluid structure interaction problems abound.
Many computational studies. Fewer studies on analysis/numerical
analysis.

We study the following simple settings:
Peskin Problem (with Analise Rodenberg and Dan Spirn): Elastic string
in a 2D Stokes fluid. The full dynamic problem is studied.
Slender Body Problem (with Laurel Ohm and Dan Spirn): A thin filament
in a 3D Stokes fluid. The stationary problem is studied.
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Peskin Problem (Jump Formulation)

We consider the Peskin problem.

µ∆u−∇p = 0, ∇ · u = 0 for R2\Γ,

JuK = 0, JσnK = K
∂2X
∂θ2

∣∣∣∣∂X
∂θ

∣∣∣∣−1

on Γ,

∂X
∂t

(θ, t) = u(X(θ, t), t).

n : unit normal on Γ.

σ : stress tensor, σ = µ(∇u + (∇u)T)− pI.

J·K : jump across Γ.

θ

n

u, p

u, p

Γ, X(θ, t)
R2

Stokes equations satisfied in R2\Γ (with u→ 0 as |x| → ∞, p bounded).
Equal viscosity µ = 1 in/out.

No-slip and stress balance boundary conditions on Γ. Stress jump given
by elastic filament force, elastic constant K = 1.

Parametrization θ ∈ S1 is material coordinate; moves with the fluid.
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Immersed Boundary (IB) Formulation

The immersed boundary (IB) formulation
of the Peskin problem.

−∆u +∇p = f , ∇ · u = 0 in R2,

f =

∫
S1

∂2X
∂θ2 δ(x− X(θ, t))dθ,

∂X
∂t

(θ, t) = u(X(θ, t), t).

δ : Dirac delta function. θ

n

u, p

u, p

Γ, X(θ, t)
R2

Stokes equation satisfied in a distributional sense.

Interface condition replaced by distributional body force (surface
measure) supported on Γ.
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Boundary Integral (BI) Formulation

The boundary integral (BI) formulation of
the Peskin problem:

u(x, t) =

∫
S1

G(x− X(θ′, t))
∂2X
∂θ2 (θ′, t)dθ′,

G(x) =
1

4π

(
− log |x| I +

x⊗ x
|x|2

)
=

1
4π

(
− log |x| I +

1
|x|2

(
x2 xy
xy y2

))
,

∂X
∂t

= u(X(θ, t), t).
θ

n

u, p

u, p

Γ, X(θ, t)
R2

G is the Stokeslet tensor, the fundamental solution of Stokes equation
(x = (x, y)T).
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Sample Simulation
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Approaches circle as t→∞.

Computed using boundary integral method.
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Significance and Goals

Siginificance of Peskin problem:
Applied Analysis

Fluid structure interaction (FSI) problems are everywhere.
Arguably one of the simplest FSI problems.

Numerical Analysis
Numerical analysis for fully dynamic FSI problems is non-existent. (Many
interesting results for the stationary problem and some results for prescribed
dynamic problems.)
Jump, IB and BI formulations basis for important FSI algorithms:

Jump: immersed interface, cartesian embedded boundary,
moving mesh methods (ALE methods).

IB: immersed boundary, front-tracking, cut FEM (?), Lagrange
multiplier methods (?).

BI: boundary integral methods.
Peskin problem could serve as model numerical analysis problem for various
FSI algorithms.

Goals:

Well-posedness, regularity: Are all formulations equivalent? Equivalent if
solution sufficiently smooth.

Stability of equilibria, global behavior.



Peskin Problem Slender Body Theory Setup Local Existence/Regularity

Related Problems/Previous Work

Related problems:

Surface tension problem: Solonnikov, Dennisova, Tanaka, Shibata,
Shimizu, Giga, Takahashi, Khöne, Prüss, Wilke, Escher, Günther,
Prokert,. . .. Both Stokes/Navier Stokes fluids.

Muskat/Hele Shaw problem: D’arcy flow, gravity and/or surface tension
force at boundary. If no surface tension, the primary linearization is
similar to Peskin problem considered here (Dirichlet-to-Neumann map):
Ambrose, Cheng, Constantin, Cordoba, Escher, Gancedo, Shkoller,
Siegel, Strain, . . .

Water wave problem.

Fanghua Lin and Jiajun Tong (2017):

Main results: local solution theory in C([0, T]; H5/2(S1)), local asymptotic
(exponential) stability of circular equilibria.

No regularity results; in particular, solution not classical. No results on
global behavior.
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Reduction to Equation for X only

BI formulation of the Peskin problem:

u(x, t) =

∫
S1

G(x− X(θ′, t))
∂2X
∂θ2 (θ′, t)dθ′

G(x) =
1

4π

(
− log |x| I +

x⊗ x
|x|2

)
=

1
4π

(
− log |x| I +

1
|x|2

(
x2 xy
xy y2

))
,

∂X
∂t

= u(X(θ, t), t). θ

n

u, p

u, p

Γ, X(θ, t)
R2

Reduce the above to an equation for the evolution of X only:

∂X
∂t

(θ, t) =

∫
S1

G(X(θ, t)− X(θ′, t))
∂2X
∂θ2 (θ′, t)dθ′.
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Small Scale Decomposition I

Consider the BI formulation:

∂tX =

∫
S1

G(X − X′)∂2
θ′X
′dθ′.

Integrate by parts in θ′:

∂tX = −p.v.
∫
S1
∂θ′G(X − X′)∂θ′X′dθ′,

−∂θ′G(X − X′) = − 1
4π

(
∆X · ∂θ′X′

|∆X|2
I + ∂θ′

(
∆X ⊗∆X
|∆X|2

))
, ∆X = X − X′.

When |θ − θ′| � 1, ∆X = X − X′ ≈ ∂θX(θ − θ′), so:

∆X · ∂θ′X′

|∆X|2
≈ |∂θX|2 (θ − θ′)
|∂θX|2 (θ − θ′)2

=
1

θ − θ′ .

Thus, we may guess that:

∂tX ≈ −
1

4π
p.v.

∫
S1

1
θ − θ′ ∂

′
θX′dθ′.
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Small Scale Decomposition II

Recall the Hilbert transform on circle:

(Hw)(θ) =
1

2π
p.v.

∫
S1

cot
(
θ − θ′

2

)
w(θ′)dθ′.

We may write:

∂tX = ΛX +R(X), ΛX = −1
4
H(∂θX),

R(X) = − 1
4π

∫
S1

((
∆X · ∂θ′X′

|∆X|2
− 1

2
cot
(
θ − θ′

2

))
I

+ ∂θ′

(
∆X ⊗∆X
|∆X|2

))
∂θ′X′dθ′.

This is known as the small scale decomposition (SSD). Introduced by
Hou, Lowengrub, Shelley (’94) for Hele-Shaw, water wave problems.

In SSD, principal part (ΛX in above) treated implicitly to remove
numerical stiffness.

Hou and Shi (08) used SSD for IB method.
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Integral Equation (Duhamel Formula)

∂tX = ΛX +R(X), X(θ, 0) = X0(θ).

Use the Duhamel formula:

X(t) = etΛX0 +

∫ t

0
e(t−s)ΛR(X(s))ds.

Strategy: Use fixed point argument to construct solution, viewing R as lower
order perturbation.

Standard technique for semilinear parabolic equations. c.f. For reaction
diffusion equations:

∂tu = ∆u + f (u), u(x, 0) = u0(x),

u = et∆u0 +

∫ t

0
e(t−s)∆f (u)ds,

where et∆ is the heat kernel.

Analysis depends critically on R being “lower order".

We shall work in the Hölder spaces Ck,γ(S1), k ∈ {0} ∪ N, 0 < γ < 1.
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Linear Semigroup Properties

The operator Λ can be written as:

Λu = −1
4
F−1 |k| Fu, F : Fourier Transform (Series)

Thus, Λ behaves like the square-root of the Laplacian and therefore is like
taking one derivative. In fact:

etΛu =
1

2π

∫
S1

P(e−t/4, θ − θ′)u(θ′)dθ′, P(r, θ) =
1− r2

1− 2r cos(θ) + r2 .

where P is the Poisson kernel. We have:∥∥∥etΛu
∥∥∥

Cβ
≤ C

tβ−α
‖u‖Cα , 0 < t ≤ 1, 0 ≤ α ≤ β.

where, if α > 0, α /∈ N, Cα(S1) = Cbαc,α−bαc(S1).
c.f. For the Laplacian: ∥∥∥et∆u

∥∥∥
Cβ
≤ C

t(β−α)/2 ‖u‖Cα .



Peskin Problem Slender Body Theory Setup Local Existence/Regularity

Estimates of R

Recall:
∂tX = ΛX +R(X),

where

R(X) = − 1
4π

∫
S1

((
∆X · ∂θ′X′

|∆X|2
− 1

2
cot
(
θ − θ′

2

))
I

+ ∂θ′

(
∆X ⊗∆X
|∆X|2

))
∂θ′X′dθ′.

Lemma

If X ∈ C1,γ(S1), then R(X) ∈ C2γ(S1).

Proved by a careful estimation of difference quotients. Use "zero
average" property of kernel.

R has the effect of taking 1 + γ − 2γ = 1− γ derivatives. Thus, it is
“lower order" than Λ.

The above results come with appropriate estimates.
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Local Existence/Uniqueness I

Duhamel formula:

X(t) = etΛX0 +

∫ t

0
e(t−s)ΛR(X(s))ds.

Define:

|X|∗ = inf
θ 6=θ′

|X(θ)− X(θ′)|
|θ − θ′| .

|X|∗ > 0 if and only if |∂θX| > 0 and no self-intersections of curve.

Definition (Mild Solution)

Let T > 0, X(t) ∈ C([0, T]; C1,γ(S1)), 0 < γ < 1. Then, X is a mild solution if X
satisfied the above Duhamel formula and |X|∗ > 0 for 0 ≤ t ≤ T and
limt→0 X(t) = X0 in C1,γ(S1).
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Local Existence/Uniqueness II

Let h1,γ(S1) (little Hölder space) be the completion of smooth functions in
C1,γ(S1). Note that, for any α > γ, C1,α(S1) ⊂ h1,γ(S1).

Theorem (M., Rodenberg, Spirn)

Suppose X0 ∈ h1,γ(S1) and |X0|∗ > 0. Then, there is a T > 0 such that X(t) is
a unique mild solution with initial value X0 up to t = T. Mild solution is
continuous with respect to initial data in the C1,γ topology.

Proof.

Use linear semigroup estimates with the fact that R is 1− γ order.

Contraction mapping argument. Bounds as well as Lipschitz estimates
on R needed (this is where all the work is).

Local existence result (almost) optimal in that R only barely lower order
with respect to Λ when γ small.
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Regularity

Given the parabolic nature of our problem, it is natural to ask whether we
have immediate smoothing for positive time.

Theorem (M., Rodenberg, Spirn)

A mild solution is in C1([ε, T]; Cn(S1)) for any ε > 0 and n ∈ N.

Proof.

Need to obtain estimates on R for higher order Hölder spaces.

This is obtained by commutator estimates on nonlinear kernels.

Our regularity results immediately show that a classical solution exists
and is unique.

Furthermore, our regularity results establish the equivalence of the jump,
IB and BI formulations of the problem.
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Further Results

The only equilibria are circles with uniformly-spaced material points.

The circular equilibria are asymptotically stable, and is approached by
exponential rate of −1/4.

Define the γ-deformation ratio:

%γ(X) =
‖∂θX‖Cγ

|X|∗
.

Suppose solution ceases to exist at t∗ <∞. Then,

lim
t→t∗

%γ(X)→∞.

Suppose %γ(X) remains bounded for all time. Then, solution is
global and converges to a circle.

Instead of F = ∂2X/∂θ2, consider the more general elasticity law:

F(θ) = ∂θ

(
T (|∂θX|) ∂θX

|∂θX|

)
, T (s) > 0,

dT
ds

> 0.

We can prove similar local-in-time well-posedness/regularity results.
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Filament in 3D

Consider a (closed) filament Σε ⊂ R3.
Center line Γ0 given by X(s), 0 ≤ s < 1
(length normalized to 1) and of radius
ε:

Σε = {x ∈ R3|dist(x,Γ0) < ε}. ε

Γ0,X(s)

Γε = ∂Σε

θ −∆u +∇p = 0,∇ · u = 0
in Ωε = R3\Σε

A Stokes fluid fills Ωε = R3\Σε (viscosity normalized to 1):

−∆u +∇p = 0, ∇ · u = 0 for Ωε.

We want to understand the dynamics of this filament.

Standard method: boundary integrals over the 2D surface Γε = ∂Σε. Too
computationally expensive (especially if there are many filaments).

We thus seek a 1D reduction.

The real problem is dynamic (filament moves with time). Here we only
consider stationary problem.
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Slender Body Approximation: First Try

Suppose we are given a force density
f(s), 0 ≤ s < 1 along the center line. A
candidate velocity field ũ is:

−∆ũ +∇p̃ =

∫ L

0
f(s)δ(x− X(s))ds,

∇ · ũ = 0.

ε

Γ0,X(s)

Γε = ∂Σε

θ −∆u +∇p = 0,∇ · u = 0
in Ωε = R3\Σε

f (s)

Thus

ũ(x) =

∫ 1

0
S(x− X(s))f(s)ds, S(x) =

1
8π

(
1
|x| I +

xxT

|x|2

)
This, however, is problematic. There is a strong θ-dependence on the velocity
field on Γε.

If the non-slip boundary condition is to be satisfied, a strong θ
dependence implies that the filament cross-section will deform very
quickly, violating fiber integrity.
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Slender Body Approximation on Straight Line

Suppose we have a straight filament of infinite extent
along z axis, f = const. Let

f = fzez + f h, ũ = ũzez + ũh.

Let (r, θ, z) be the cylindrical coordinate system. Then,
ũz = ũz(r) and:

ũh(r, θ) =
1

4π

(
− log |r| f h +

1
2

(
1 + cos(2θ) sin(2θ)

sin(2θ) 1− cos(2θ)

)
f h

)
fz

θ

r fh

f⊥ez

Note that there is a strong θ at r = ε, the cylinder surface Γε. To fix this, set:

uSB
h = ũh +

ε2

4
∆ũh.

This has no θ dependence. Hence, in this case, a reasonable expression
may be:

uSB(x) =

∫ ∞
−∞

(
S +

ε2

4
∆S
)

(x− sez)f(s)ds.
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Slender Body Approximation on Straight Line

Velocity field ũh for straight line. Note θ
dependence along circle Γε (r = ε).

Velocity field uSB
h for straight line. Note

θ dependence on Γε is absent.
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Slender Body Approximation

In general, given a (closed) filament
X(s) with radius ε, the Slender Body
Approximation is, for x ∈ Ωε = R3\Σε:

uSB(x) =

∫ 1

0

(
S +

ε2

2
D
)

(x−X(s))f(s)ds,

ε

Γ0,X(s)

Γε = ∂Σε

θ −∆u +∇p = 0,∇ · u = 0
in Ωε = R3\Σε

f (s)

S =
1

8π

(
1
|x| I +

xxT

|x|2

)
, D =

1
2

∆S =
1

8π

(
1
|x|3

I − 3xxT

|x|5

)
,

For X(s) non-straight and f(s) non-constant, u only approximately constant in
θ on s cross-sections.

Proposed in the 70’s-80’s by Lighthill, Keller,
Rubinow, Johnson.

Widely used in computation of filament dynamics:
Shelley, Tornberg, Lauga, Fauci, Cortez, Zorin ...

What is this an approximation to?

Nazockdast et.al.
(2016)
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Slender Body Problem I

We define the Slender Body Problem
to be:

−∆u +∇p = 0, ∇ · u = 0 in Ωε,

On Γε:

u(s, θ) = u(s),

−
∫ 2π

0
σnεJε(s, θ)dθ = f(s).

ε

Γ0,X(s)

Γε = ∂Σε

θ −∆u +∇p = 0,∇ · u = 0
in Ωε = R3\Σε

f (s)

where n is the outward unit normal on Γε = ∂Σε and

σn = (∇u + (∇u)T)− pI, Jε = 1− εκ(s) cos(θ), κ : curvature.

For every fixed s cross-section, u on Γε is constant in θ. This is the fiber
integrity condition (this condition of Dirichlet type).

Total stress exerted on each cross section must be equal to the line force
density f(s) (this condition is of Neumann type).

f(s) (and center-line coordinates X(s)) is the only given data.
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Slender Body Problem II

We define the Slender Body Problem
to be:

−∆u +∇p = 0, ∇ · u = 0 in R3\Σε,

On Γε = ∂Σε:

u(s, θ) = u(s),

−
∫ 2π

0
σnεJε(s, θ)dθ = f(s).

ε

Γ0,X(s)

Γε = ∂Σε

θ −∆u +∇p = 0,∇ · u = 0
in Ωε = R3\Σε

f (s)

where n is the outward unit normal on Γε = ∂Σε and

σ = (∇u + (∇u)T)− pI, Jε = 1− εκ(s) cos(θ), κ : curvature.

Does the Slender Body Problem have a solution?

Does the Slender Body Approximation uSB provide a good approximation
to the Slender Body Problem?
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Weak Formulation I

Take a divergence-free test function v that is constant along s cross-sections,
multiply to Stokes equation and integrate by parts:∫

Ωε

−(∇ · σ) · vdx =

∫
Γε

(σn) · vdµΓε +

∫
Ωε

σ : ∇vdx

=

∫ 1

0

∫ 2π

0
(σn · v)εJεdθds +

∫
Ωε

2∇Su : ∇Svdx

=

∫ 1

0

(∫ 2π

0
σnεJεdθ

)
· v(s)ds +

∫
Ωε

2∇Su : ∇Svdx

=−
∫ 1

0
f(s) · v(s)ds +

∫
Ωε

2∇Su : ∇Svdx, where ∇Su =
1
2
(
∇u + (∇u)T) .

Note that, if v = u, we have:∫
Ωε

2 |∇Su|2 dx =

∫ 1

0
f · uds.

This has a natural physical interpretation: power equals energy
dissipation per unit time.
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Weak Formulation II

Let:

Ḣ1(Ωε) = {u ∈ L6(Ωε)| ‖∇u‖L2(Ωε) <∞},

Aε = {u ∈ Ḣ1(Ωε)|u(s, θ) = u(s) on Γε},

Adiv
ε = {u ∈ Aε|∇ · u = 0}.

Fiber integrity condition (Dirichlet-like) is encoded in definition of function
space (essential b.c.).

A velocity field u ∈ Adiv
ε is a weak solution to the Slender Body Problem if∫

Ωε

2∇Su : ∇Svdx =

∫ 1

0
f(s)v(s)ds, for all v ∈ Adiv

ε .

Equivalently (requires proof), u ∈ Adiv
ε , p ∈ L2(Ωε) is a weak solution if,∫

Ωε

(2∇Su : ∇Sv− p∇ · v) dx =

∫ 1

0
f(s)v(s)ds, for all v ∈ Aε.
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Existence/Uniqueness

Theorem (M., Ohm., Spirn)

Let X be a C2 curve. Given f ∈ L2(T1),T1 = R/Z, there exists a unique weak
solution (u, p) ∈ Adiv

ε × L2(Ωε) with (C does not depend on ε):

‖∇u‖L2(Ωε) + ‖p‖L2(Ω) ≤ C |log ε|1/2 ‖f‖L2(T1) .

Proof.

B[u, v] ≡
∫

Ωε

2∇Su : ∇Svdx =

∫ 1

0
f(s)v(s)ds ≡ F [v], u, v ∈ Adiv

ε

Coercivity of B on Aε ×Aε follows from the Korn inequality:

‖∇v‖L2(Ωε) ≤ CK ‖∇Sv‖L2(Ωε) .

Continuity of F in Aε follows from trace inequality:

‖v‖L2(T1) ≤ CT ‖∇v‖L2(Ωε) .

ε dependence requires further work. For p, use inequality on right
inverse of divergence operator.
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PDE satisfied by Error

Recall that uSB was the Slender Body Approximation. We seek to estimate
the error ue = u− uSB, pe = p− pSB. We have:

−∆ue +∇pe = 0, ∇ · ue = 0 in Ωε,

ue = −ures(s, θ) + ũ(s) on Γε for some ũ(s),

−
∫ 2π

0
(σen)εJεdθ = f res(s) on Γε,

where

σe = σ − σSB, σSB = 2∇SuSB − pSBI,

ures(s, θ) = uSB − 1
2π

∫ 2π

0
uSB(s, θ)dθ,

f res(s) = f +

∫ 2π

0
(σSBn)εJεdθ.

ures(s, θ) is the “non-conforming" residual; uSB /∈ Adiv
ε .

f res(s) is the “conforming residual".
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Estimation of Residual

Lemma (M., Ohm, Spirn)

Suppose f is C1, X is in C2,α, 0 < α < 1. Then,

‖f res‖L∞ ≤ Cε ‖f‖C1(T1) , ‖u
res‖L∞ ≤ Cε |log ε| ‖f‖C1(T1)∥∥∥∥1

ε

∂ures

∂θ

∥∥∥∥
L∞

+

∥∥∥∥∂ures

∂s

∥∥∥∥
L∞
≤ C |log ε| ‖f‖C1(T1)

where C does not depend on ε.

Proof.

When X(s) is a straight infinite line and f is constant, f res = ures = 0.

C2,α curve with C1 force can be locally approximated by straight
line/constant force as ε→ 0.

Estimate nearly singular integrals using above observation. Need to
consider “far field" and "near field" residual contributions separately.
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Error Estimate

Theorem (M., Ohm, Spirn)

Given f in C1 and X in C2,α, 0 < α < 1, the difference between (u, p) and its
Slender Body Approximation (uSB, pSB) satisfies:∥∥∥∇(u− uSB)

∥∥∥
L2(Ωε)

+
∥∥∥p− pSB

∥∥∥
L2(Ωε)

≤ Cε |log ε| ‖f‖C1(T1) .

where the constant C does not depend on ε.

Proof.

Proof essentially follows a Lax Equivalence principle type argument.

Consistency: Residual estimated as in previous slide.

Stability with respect to ε→ 0: Consider the Korn and trace inequalities:

‖∇v‖L2(Ωε) ≤ CK ‖∇Sv‖L2(Ωε) , ‖v‖L2(T1) ≤ CT ‖∇v‖L2(Ωε) .

We must study ε dependence of CK and CT. We can show CK

independent of ε, CT = O(|log ε|1/2). Similar independence of ε for the
operator norm of the right inverse of divergence operator.
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Future Directions/Acknowledgments/Funding

Future Directions:
Peskin Problem:

Global well-posedness/singularity formation.
Variants of the Peskin problem: different viscosity, incompressible elasticity,
3D, etc.
Numerical analysis of IB and/or BI methods.

Slender Body Theory:
Computational verification of optimality of error estimates.
Variants: open filaments, inextensible filaments, twisting filaments, etc.
Dynamic problems.
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