Some Simple Preconditioners for Unfitted Nitsche methods of *high contrast interface* elliptic problems

Blanca Ayuso de Dios Dipartimento di Matematica, Università di Bologna

Kyle Dunn & Marcus Sarkis (WPI, Worchester, US) Simone Scacchi (UNIMI, Milano, Italy)

Numerical Analysis of Coupled and Multi-Physics Problems with Dynamic Interfaces Oaxaca, July 30th-August 2nd, 2018

Blanca Ayuso de Dios (UNIBO & IMATI)

Simple Solvers for CutFEM

< 回 > < 三 > < 三 >

Why Solvers & Preconditioning?

PDE on $\Omega \longrightarrow PDE$ Discretizations $\longrightarrow Au = f$

- *A* is large, sparse, positive definite, ill-conditioned ($\kappa(A) = O(h^{-2})$)
- Solve Algebraic Linear Systems Au = f:
 - ▷ Direct Methods: CAUTION!! Cost= $O(N^3)$ $N \to \infty$
 - Iterative Methods

Goal: Develop Uniformly Convergent Iterative methods for Au = f

▷ Find *B* such that BAu = g, g = Bf easier (faster) than Au = f

▷ Good *B*: cheap, low storage, mesh/parameter independence..

(old) Domain Decomposition ideas [Bjorstad, Dryja, Widlund (86')]

- Idea : Divide and Conquer
- Possibility of dealing with bigger problems

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline I

Model problem: an elliptic Inteface Problem CutFEM Discretization for High-Contrast Problemt

Blanca Ayuso de Dios (UNIBO & IMATI)

Simple Solvers for CutFEM

Model problem: an elliptic Inteface Problem

$$\begin{split} \Omega &= \Omega^- \cup \ \Omega^+ \subset \mathbb{R}^2; \ \Gamma := \partial \Omega^- \cap \partial \Omega^+ \in \mathcal{C}^2 \\ \bullet \ \text{Given } f \in L^2(\Omega) \ \text{let } f^\pm = f_{|_{\Omega^\pm}} \ \text{and Find } u_* \ \text{with } u^\pm_* := (u_*)_{|_{\Omega^\pm}} : \\ & \begin{cases} -\nabla \cdot \left(\rho^\pm \nabla u^\pm_*\right) = f^\pm & \text{in } \Omega^\pm \\ u^\pm_* = 0 & \text{on } \partial \Omega \\ & [u_*] = 0 & \text{on } \Gamma \\ & \|\rho \nabla u_*\| = 0 & \text{on } \Gamma \end{split}$$

Notation:

$$[u] = u^+ - u^- \qquad [\![\rho \nabla u]\!] = \rho^+ \nabla u^+ \cdot \boldsymbol{n}^+ + \rho^- \nabla u^- \cdot \boldsymbol{n}^-$$

• Assumption: $0 < \rho^- \le \rho^+$ both constants $\rho^{\pm} \in \mathbb{P}^0(\Omega^{\pm})$

くゆ くうとく ひとう う

Model problem: an elliptic Inteface Problem

 $\Omega = \Omega^- \cup \ \Omega^+ \subset \mathbb{R}^2; \ \! \Gamma := \partial \Omega^- \cap \partial \Omega^+ \in \mathcal{C}^2$

• Given $f \in L^2(\Omega)$ let $f^{\pm} = f_{|_{\Omega^{\pm}}}$ and Find u_* with $u^{\pm}_* := (u_*)_{|_{\Omega^{\pm}}}$:

$$\begin{cases} -\nabla \cdot \left(\rho^{\pm} \nabla u_{*}^{\pm}\right) = f^{\pm} & \text{ in } \Omega^{\pm} \\ u_{*}^{\pm} = 0 & \text{ on } \partial \Omega \\ [u_{*}] = 0 & \text{ on } \Gamma \\ [\rho \nabla u_{*}]] = 0 & \text{ on } \Gamma \end{cases}$$

Notation:

$$[u] = u^+ - u^- \qquad [\rho \nabla u] = \rho^+ \nabla u^+ \cdot \boldsymbol{n}^+ + \rho^- \nabla u^- \cdot \boldsymbol{n}^-$$

• Assumption: $0 < \rho^{-} \le \rho^{+}$ both constants $\rho^{\pm} \in \mathbb{P}^{0}(\Omega^{\pm})$

• Notice:
$$u_*^{\pm} \in H^2(\Omega^{\pm})$$
 but $u_* \in H^{3/2-\epsilon}(\Omega)$ for $\epsilon > 0$

< 日 > < 同 > < 回 > < 回 > < □ > <

Numerical Approximation to Interface Problem

- No Mesh-Free approaches...
- Use unfitted method
 - ▷ (eXtended) FEM, Finite Cell Method (FCM), CutFEM,

Blanca Ayuso de Dios (UNIBO & IMATI)

Simple Solvers for CutFEM

伺い イヨン イヨン ニヨ

Unfitted Methods (a brief (account of) history....)

• [Nitsche (1971)]

- introduce penalties to weakly enforcing bc
- [Barrett & Elliot (1982-1987)] unfitted methods
 - Use of penalties for Curved boundaries & smooth interface
- [Belytschko (1999)..... Reusken & et al (2005...)] eXtended FEM
 - Generalized FEM, enriched methods, PUM
- [Hansbo & Hansbo (2002)] Nitsche method for interface problems
- [Parvizian & Düster & Rank, (2007)] Finite Cell Method (elasticity)
- [Burman& Hansbo (2012)] introduce CutFem
 - ▷ [Burman & Claus & Hansbo &Larsson& Massing (2014)]

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unfitted Mesh along the Interface

- States of the state of the s
- ▷ cuts $\Gamma \cap \mathscr{T}_h$ regular cuts:
 - \triangleright $\Gamma \cap K$ is either an edge or cuts exactly twice ∂K
 - > 3D: [Guzman& Olshanskii (2018)] weaker assumptions

< 回 > < 三 > < 三 >

Unfitted Mesh along the Interface: Notation

$\mathscr{T}_h^{\pm} := \{ T \in \mathcal{T}_h : T \cap \Omega^{\pm} \neq \emptyset \},$	$\mathscr{T}_h^{\Gamma} := \{ T \in \mathcal{T}_h : T \cap \Gamma \neq \emptyset \}.$
$\Omega^{\pm}_h := Int\Big(igcup_{T\in\mathcal{T}_h^{\pm}}\overline{T}\Big)$	$\Omega_h^{\Gamma} := \operatorname{Int}\Big(\bigcup_{T\in\mathcal{T}_h^{\Gamma}}\overline{T}\Big).$
$\Omega^{\pm}_{h,0}=\Omega^{\pm}_hackslash\overline{\Omega}^{F}_h$	$\boxed{\Omega = \Omega_{h,0}^+ \cup \overline{\Omega}_h^{\Gamma} \cup \Omega_{h,0}^-}$

 $\mathcal{E}_h^{\Gamma,\pm} := \{ \boldsymbol{e} = \mathsf{Int}(\partial T_1 \cap \partial T_2) : T_1, T_2 \in \mathcal{T}_h^{\pm}, \text{ and } T_1 \in \mathcal{T}_h^{\Gamma} \text{ or/and } T_2 \in \mathcal{T}_h^{\Gamma} \}.$

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

CutFEM Discretization for High-Contrast Problem

• Discrete Domain Ω_{h}^{+} with ρ^{-} -coefficient

 $\triangleright V^- := V_h(\Omega_h^-) : \text{conforming } \mathbb{P}^1(\mathscr{T}_h^-) \cap \mathcal{C}^0(\Omega_h^-) \text{ or } \mathbb{Q}^1(\mathscr{T}_h^-) \cap \mathcal{C}^0(\Omega_h^-)$

< 回 > < 三 > < 三 >

CutFEM Discretization for High-Contrast Problem

• Discrete Domain Ω_h^+ with ρ^- -coefficient

 $\triangleright V^- := V_h(\Omega_h^-) : \text{conforming } \mathbb{P}^1(\mathscr{T}_h^-) \cap \mathcal{C}^0(\Omega_h^-) \text{ or } \mathbb{Q}^1(\mathscr{T}_h^-) \cap \mathcal{C}^0(\Omega_h^-)$

• Discrete Domain Ω_h^{\pm} with ρ^+ -coefficient

 $\triangleright V^+ := V_h(\Omega_h^+) : \text{conforming } \mathbb{P}^1(\mathscr{T}_h^+) \cap \mathcal{C}^0(\Omega_h^+) \text{ or } \mathbb{Q}^1(\mathscr{T}_h^+) \cap \mathcal{C}^0(\Omega_h^+)$

 \triangleright No-floating subdomain: functions are zero on $\partial\Omega\cap\partial\Omega^+$

CutFEM approximation

- Global space $V_h = V^- \times V^+$:
- double-valued on $\Omega_h^{\Gamma} := \{K \in \mathscr{T}_h : K \cap \Gamma \neq \emptyset\}$
- Nitsche-DG techniques to glue V_h^+ and V_h^- on Γ
- Flux edge stabilization on $\mathcal{E}_h^{\Gamma} = \{ e \subset \partial K : K \in \Omega_h^{\Gamma} \}$ (difference with other techniques FCM...)

Blanca Ayuso de Dios (UNIBO & IMATI)

CutFEM approximation for High Contrast

[Burman, Guzmán, Sarkis (2018)]

Find $u_h = (u^+, u^-) \in V_h = V^+ \times V^-$, st

 $a_h(u_h, v_h) = (f^+, v^+)_{\Omega^+} + (f^-, v^-)_{\Omega^-} \quad \forall v_h = (v^+, v^-) \in V^+ \times V^-$

$$\begin{aligned} \mathbf{a}_{h}(u_{h}, \mathbf{v}_{h}) &= \int_{\Omega^{-}} \rho_{-} \nabla u^{-} \cdot \nabla \mathbf{v}^{-} d\mathbf{x} + \int_{\Omega^{+}} \rho_{+} \nabla u^{+} \cdot \nabla \mathbf{v}^{+} d\mathbf{x} \\ &+ \int_{\Gamma} \left(\{ \rho \nabla \mathbf{v}_{h} \}_{\mathbf{w}} \cdot \mathbf{n}^{-} [u_{h}] + \{ \rho \nabla u_{h} \}_{\mathbf{w}} \cdot \mathbf{n}^{-} [\mathbf{v}_{h}] \right) d\mathbf{s} + \frac{\gamma_{\Gamma}}{h} \{ \rho \}_{H} \int_{\Gamma} [u_{h}] [\mathbf{v}_{h}] d\mathbf{s} \\ &+ \gamma_{2} \sum_{e \in \mathcal{E}_{h}^{\Gamma}} \left(|e| \int_{e} \rho_{-} \left[[\nabla u^{-}] \right] \left[[\nabla \mathbf{v}^{-}] \right] + \rho_{+} \left[[\nabla u^{+}] \right] \left[[\nabla \mathbf{v}^{+}] \right] \right) d\mathbf{s}, \\ &\{ \rho \}_{H} = \frac{2\rho^{+}\rho^{-}}{\rho^{+} + \rho^{-}}, \qquad \{ \rho \nabla \mathbf{v}_{h} \}_{\omega} := (\omega_{-} \rho^{-} \nabla \mathbf{v}^{-} + \omega_{+} \rho^{+} \nabla \mathbf{v}^{+}), \quad \omega_{-} + \omega_{+} = 1 \end{aligned}$$

Blanca Ayuso de Dios (UNIBO & IMATI)

CMO-Oaxaca, July 2018 11 / 36

CutFEM approximation

$$\begin{aligned} \mathbf{a}_{h}(u_{h}, \mathbf{v}_{h}) &= \int_{\Omega^{-}} \rho_{-} \nabla u^{-} \cdot \nabla v^{-} dx + \int_{\Omega^{+}} \rho_{+} \nabla u^{+} \cdot \nabla v^{+} dx \\ &+ \int_{\Gamma} \left(\{ \rho \nabla v_{h} \}_{w} \cdot \mathbf{n}^{-} [u_{h}] + \{ \rho \nabla u_{h} \}_{w} \cdot \mathbf{n}^{-} [v_{h}] \right) ds + \frac{\gamma_{\Gamma}}{h} \{ \rho \}_{H} \int_{\Gamma} [u_{h}] [v_{h}] ds \\ &+ \gamma_{2} \sum_{e \in \mathcal{E}_{h}^{\Gamma}} \left(|e| \int_{e} \rho_{-} [[\nabla u^{-}]] [[\nabla v^{-}]] + \rho_{+} [[\nabla u^{+}]] [[\nabla v^{+}]] \right) ds, \end{aligned}$$

Semi-Norms and Norms:

$$\begin{aligned} \|v^{\pm}\|_{V^{\pm}}^{2} &:= \rho_{\pm} \|\nabla v^{\pm}\|_{L^{2}(\Omega^{\pm})}^{2} + \sum_{e \in \mathcal{E}_{h}^{\Gamma,\pm}} \gamma_{\pm} |e|\| \left[[\nabla v^{\pm}] \right] \|_{L^{2}(e)}^{2} \qquad \forall v^{\pm} \in V^{\pm} . \\ \|v_{h}\|_{V_{h}}^{2} &:= \|v^{+}\|_{V^{+}}^{2} + \|v^{-}\|_{V^{-}}^{2} + \sum_{K \in \mathcal{F}_{h}^{\Gamma}} \frac{\gamma_{\Gamma}}{h_{K}} \{\rho\}_{H} \| [v_{h}] \|_{L^{2}(K \cap \Gamma)}^{2} \qquad \forall v_{h} \in V_{h} = V^{+} \times V^{2} . \end{aligned}$$

- $a_h(v_h, v_h) \gtrsim \|v_h\|_{V_h}^2$, for all $v_h \in V_h$ Stability
- Continuity $|a_h(u_h, v_h)| \lesssim ||u_h||_{V_h} ||v_h||_{V_h}$, for all $v_h, z_h \in V_h$.
- Constants independent of contrast & location of interface

э

CutFEM approximation

Semi-Norms and Norms:

$$\begin{aligned} |v^{\pm}|_{V^{\pm}}^{2} &:= \rho_{\pm} \|\nabla v^{\pm}\|_{L^{2}(\Omega^{\pm})}^{2} + \sum_{e \in \mathcal{E}_{h}^{\Gamma, \pm}} \gamma_{\pm} |e|\| \left[[\nabla v^{\pm}] \right] \|_{L^{2}(e)}^{2} \qquad \forall v^{\pm} \in V^{\pm} . \\ \|v_{h}\|_{V_{h}}^{2} &:= |v^{+}|_{V^{+}}^{2} + |v^{-}|_{V^{-}}^{2} + \sum_{K \in \mathcal{T}_{h}^{\Gamma}} \frac{\gamma_{\Gamma}}{h_{K}} \{\rho\}_{H} \| [v_{h}] \|_{L^{2}(K \cap \Gamma)}^{2} \qquad \forall v_{h} \in V_{h} = V^{+} \times V^{-} \end{aligned}$$

- Stability $a_h(v_h, v_h) \gtrsim \|v_h\|_{V_h}^2$, for all $v_h \in V_h$
- Continuity $|a_h(u_h, v_h)| \lesssim \|u_h\|_{V_h} \|v_h\|_{V_h}$, for all $v_h, z_h \in V_h$.
- Constants independent of contrast & location of interface

Ghost penalization provides:

$$\|\nabla v^{\pm}\|_{L^{2}(\Omega_{h}^{\pm})}^{2} \lesssim \|\nabla v^{\pm}\|_{L^{2}(\Omega^{\pm})}^{2} + \sum_{\boldsymbol{e} \in \mathcal{E}_{h}^{\Gamma,\pm}} \gamma_{\pm} |\boldsymbol{e}|\| \left[\left[\nabla v^{\pm}\right] \right] \|_{L^{2}(\boldsymbol{e})}^{2} .$$

$$\succ \qquad \kappa(A_h) = O\left(\frac{\rho_+}{\rho_-}h^{-2}\right) \text{ Cut cells do not degrade it!}$$

Some Preconditioning Strategies for Unfitted Methods

 Old but Good idea: [Bank & Scott (1989)] basis re-scaling (Diagonal smoother)

> Linears 3D \checkmark Linears in 2D: $\kappa(A_h) = O\left(N(1 + \log \left|\frac{h_{max}}{h_{min}}\right|)\right) \checkmark$

- XFem & Unfitted: Diagonal scaling (Jacobi smoother)
 - [Lehrenfeld & Reusken (2017)] Schwarz method
- FiniteCell Method: Need of preconditioners for High order
 - ▷ [Prenter & Verhoosel & van Zwieten & E.H. van Brummelen (2017)]:
- CutFem Method

.

Ludescher & Gross & Reusken (2018)] Multigrid (soft inclusion?)

Some Simple Preconditioners for CutFEM: outline

- Block-Jacobi: One Level method
 - ▷ Overlapping decomposition $\Omega_h^+ \cup \Omega_h^-$ (overlap in Ω_h^{Γ})
- Dirichlet-Neuman:
 - ▷ Non- Overlapping decomposition $\Omega^+ \cup \Gamma \cup \Omega^- = \Omega_{h,0}^+ \cup \overline{\Omega_h^\Gamma} \cup \Omega_{h,0}^-$
 - One Level method & Two Level methods

Aim:

- Optimality wrt h
- Robustness w.r.t. ρ;
- robustness w.r.t D⁺ := diam(Ω⁺) for floating domain
- Scalable (result valid for many inclusions) ?

A (10) A (10)

One-level Schwarz for CutFEM

- Restriction operators: \mathcal{R}_{\pm} : $V_h \longrightarrow \{V^{\pm}, 0\}$
- Local Solvers: a[±] : V[±] × V[±] → ℝ are the restriction of a_h(·, ·) to the subspaces {V⁺ × 0} and {0 × V[−]} respectively:

$$a^{\pm}(u^{\pm},v^{\pm})=a_{h}(R^{\intercal}_{\pm}u^{\pm},\mathcal{R}^{\intercal}_{\pm}v^{\pm}) \qquad orall \ u^{\pm}, \ v^{\pm}\in V^{\pm} \ .$$

• Projection operators: $P^{\pm} = \mathcal{R}_{\pm}^{T} \widehat{P}_{\pm} : V_{h} \longrightarrow \mathcal{R}_{\pm}^{T} V^{\pm}$, with $\widehat{P}_{\pm} : V_{h} \longrightarrow V^{\pm}$:

$$a^{\pm}(\widehat{P}_{\pm}u_h,v^{\pm}) = a_h(u_h,\mathcal{R}_{\pm}^Tv^{\pm}) \quad \forall v^{\pm} \in V^{\pm}$$

• one-level additive Schwarz operator: $\mathcal{B}_{jac}\mathcal{A} := P^+ + P^-$

• Remark:
$$a^+(u^+, v^+) + a^-(u^-, v^-) \neq a_h(u, v)$$

Blanca Ayuso de Dios (UNIBO & IMATI)

One-level Schwarz for CutFEM

One-level Schwarz for CutFEM

• Ω^+ floating and $\mathcal{B}_{jac}\mathcal{A} := P^+ + P^-$;

$$\kappa(\mathcal{B}_{\textit{jac}}\mathcal{A})\simeq rac{\mathsf{diam}(\Omega^-)\gamma_{\mathsf{\Gamma}}}{h}$$

- Robustness w.r.t. ρ;
- robustness w.r.t $D^+ := \operatorname{diam}(\Omega^+)$
- can be easily made Scalable (result valid for many inclusions);

3

A (10) A (10)

One-level Schwarz for CutFEM

One-level Schwarz for CutFEM

• Ω^+ floating and $\mathcal{B}_{jac}\mathcal{A} := \mathcal{P}^+ + \mathcal{P}^-; \ \mathcal{V}^{\pm} = \mathbb{P}^{\mathcal{P}}(\mathscr{T}_h) \cap \mathcal{C}^0(\Omega).$

$$\kappa(\mathcal{B}_{jac}\mathcal{A})\simeq rac{\mathsf{diam}(\Omega^-)\gamma_{\mathsf{\Gamma}} p^2}{h}$$

- Robustness w.r.t. ρ ;
- robustness w.r.t D⁺ := diam(Ω⁺)
- can be easily made Scalable (result valid for many inclusions);

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Neuman-Dirichlet preconditioner

Non- Overlapping decomp. $\Omega^+ \cup \Gamma \cup \Omega^- = \left| \Omega^+_{h,0} \cup \overline{\Omega^{\Gamma}_h} \cup \Omega^-_{h,0} \right|$

- local spaces on $\Omega_{h,0}^{\pm}$:
- Fat Trace spaces:

$$V_0^{\pm} = \{ v \in V^{\pm} : v |_{\mathcal{K}} \equiv 0 \text{ on } \Omega_h^{\Gamma} \}$$
$$W^{\pm} := \{ v \in V^{\pm} \text{ restricted to } \Omega_h^{\Gamma} \}$$

3

< 回 > < 回 > < 回 >

(towards..) Non-overlapping preconditioner

• Idea: orthogonal (w.r.t. *a_h*) splitting

 $| u_h = \mathcal{P}_h u + \mathcal{H}_h u$ s.t. $a_h(\mathcal{H}_h u, \mathcal{P}_h u) = 0$

P_hu = (*P*⁺*u*⁺, *P*[−]*u*[−]) solution of local problems in *V*₀[±]
 local solution operators *P*[±] : *V_h* → *V*₀[±] defined by

$$a^{\pm}(\mathcal{P}^{\pm}u^{\pm}, v^{\pm}) = (f^{\pm}, v^{\pm})_{\Omega^{\pm}} \qquad \forall v^{\pm} \in V_0^{\pm}$$

 $a^{\pm}(u^{\pm}, v^{\pm}) = \rho_{\pm} \left(\nabla u^{\pm}, \nabla v^{\pm} \right)_{\Omega^{+}} + \gamma_{\pm} \rho_{\pm} \langle |e| \left[\left[\nabla u^{\pm} \right] \right], \left[\left[\nabla v^{\pm} \right] \right] \rangle_{\mathcal{E}_{h}^{\Gamma, \pm}} \quad u^{\pm}, v^{\pm} \in V_{0}^{\pm}$

• $\mathcal{H}_h u = (\mathcal{H}^+ u^+, \mathcal{H}^- u^-)$ discrete *harmonic extension* (suitably defined...)

$$a_h(\mathcal{H}_h u_h, \mathcal{H}_h v_h) = (f, v_h)_{\Omega} - a_h(\mathcal{P}_h u_h, v_h) \qquad \forall v_h \in V_h$$

 $\mathcal{H}_h u = u_h - \mathcal{P}_h u$ live on Fat Trace space $W^+ \times W^-$

イロト 不得 トイヨト イヨト ニヨー

(towards..) Non-overlapping preconditioner

Idea: orthogonal (w.r.t. a_h) splitting

 $u_h = \mathcal{P}_h u + \mathcal{H}_h u$ s.t. $a_h(\mathcal{H}_h u, \mathcal{P}_h u) = 0$

• $\mathcal{P}_h u = (\mathcal{P}^+ u^+, \mathcal{P}^- u^-)$ solution of local problems in V_0^{\pm} local solution operators $\mathcal{P}^{\pm} : V_h \longrightarrow V_0^{\pm}$ defined by

$$a^{\pm}(\mathcal{P}^{\pm}u^{\pm},v^{\pm})=(f^{\pm},v^{\pm})_{\Omega^{\pm}} \quad \forall v^{\pm}\in V_0^{\pm}.$$

 $a^{\pm}(u^{\pm}, v^{\pm}) = \rho_{\pm} \left(\nabla u^{\pm}, \nabla v^{\pm} \right)_{\Omega^{+}} + \gamma_{\pm} \rho_{\pm} \langle |e| \left[\left[\nabla u^{\pm} \right] \right], \left[\left[\nabla v^{\pm} \right] \right] \rangle_{\mathcal{E}_{h}^{\Gamma, \pm}} \quad u^{\pm}, v^{\pm} \in V_{0}^{\pm}$

• $\mathcal{H}_h u = (\mathcal{H}^+ u^+, \mathcal{H}^- u^-)$ discrete *harmonic extension* (suitably defined...)

$$a_h(\mathcal{H}_h u_h, \mathcal{H}_h v_h) = (f, v_h)_{\Omega} - a_h(\mathcal{P}_h u_h, v_h) \qquad \forall v_h \in V_h$$

 $\mathcal{H}_h u = u_h - \mathcal{P}_h u$ live on Fat Trace space $W^+ \times W^-$

Aim: build a preconditioner for the Schur complement: $S: W_h \longrightarrow W_h$

 $< S\eta, w >_{\ell^2(W^+)} := a_h(\mathcal{H}_h\eta, \mathcal{H}_hw) \qquad \forall \eta, w \in W_h$

Blanca Ayuso de Dios (UNIBO & IMATI)

towards Neuman-Dirichlet preconditioner: Algebraic formulation

• dofs for
$$V^+ = \{ V_0^+, W^+ \}$$

- I^+ : interior dofs V_0^+
- W^+ interface dofs for $V^+ = \{V_0^+, W^+\}$
- all dofs for V^- (interior and on interface)

The linear system $\mathcal{A} \mathbf{U} = \mathbf{F}$ in block form:

$$\begin{bmatrix} \mathcal{A}_{l^{+}l^{+}} & \mathcal{A}_{l^{+}W^{+}} & \mathbf{0} \\ \mathcal{A}_{W^{+}l^{+}} & \mathcal{A}_{W^{+}W^{+}} & \mathcal{A}_{W^{+}V^{-}} \\ \mathbf{0} & \mathcal{A}_{V^{-}W^{+}} & \mathcal{A}_{V^{-}V^{-}} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{l^{+}} \\ \mathbf{U}_{W^{+}} \\ \mathbf{U}_{V^{-}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{l^{+}} \\ \mathbf{F}_{W^{+}} \\ \mathbf{F}_{V^{-}} \end{bmatrix}$$

Blanca Ayuso de Dios (UNIBO & IMATI)

Simple Solvers for CutFEM

CMO-Oaxaca, July 2018 19 / 36

4 A N

towards Neuman-Dirichlet preconditioner: Algebraic formulation

- dofs for $V^+ = \{ V_0^+, W^+ \}$
 - l^+ : interior dofs V_0^+
 - W^+ interface dofs for $V^+ = \{V_0^+, W^+\}$
- all dofs for V⁻ (interior and on interface)

The linear system $\mathcal{A} \mathbf{U} = \mathbf{F}$ in block form:

$$\begin{bmatrix} \mathcal{A}_{I^+ I^+} & \mathcal{A}_{I^+ W^+} & \mathbf{0} \\ \mathcal{A}_{W^+ I^+} & \boxed{\mathcal{A}^+_{W^+ W^+} + \mathcal{A}^-_{W^+ W^+}} & \mathcal{A}_{W^+ V^-} \\ \mathbf{0} & \mathcal{A}_{V^- W^+} & \mathcal{A}_{V^- V^-} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{I^+} \\ \mathbf{U}_{W^+} \\ \mathbf{U}_{V^-} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{I^+} \\ \mathbf{F}_{W^+} \\ \mathbf{F}_{V^-} \end{bmatrix}$$

• Elimination of the l^+ and V^- dofs $\implies S U_{W^+} = G_{W^+}$

$$\mathcal{S} = \mathcal{S}_+ + \mathcal{S}_-$$

3

< 回 > < 回 > < 回 >

towards Neuman-Dirichlet preconditioner: local Schur Complement

$$\mathcal{A}_{W^+W^+} = \mathcal{A}_{W^+W^+}^+ + \mathcal{A}_{W^+W^+}^-$$

Schur Complement: $S = S_+ + S_-$

$$S_{+} = \mathcal{A}_{W^{+}W^{+}}^{+} - \mathcal{A}_{W^{+}I^{+}} \mathcal{A}_{I^{+}I^{+}}^{-1} \mathcal{A}_{I^{+}W^{+}}$$
$$S_{-} = \mathcal{A}_{W^{+}W^{+}}^{-} - \mathcal{A}_{W^{+}V^{-}} \mathcal{A}_{V^{-}W^{+}}^{-1} \mathcal{A}_{V^{-}W^{+}} \mathcal{A}_{V^{-}W^{+}}^{-1}$$

$$\begin{split} \mathcal{S} \mathbf{U}_{W^+} &= \mathbf{G}_{W^+} \\ \mathbf{G}_{W^+} &= \mathbf{F}_{W^+} - \mathcal{A}_{W^+I^+} \, \mathcal{A}_{I^+I^+}^{-1} \, \mathbf{F}_{I^+} - \mathcal{A}_{W^+V^-} \, \mathcal{A}_{V^-V^-}^{-1} \, \mathbf{F}_{V^-} \end{split}$$

We recover U_{I+} and U_{I-} via

$$\mathbf{U}_{\mathbf{I}^+} = \mathcal{A}_{I^+I^+}^{-1} (\mathbf{F}_{I^+} - \mathcal{A}_{I^+W^+} \mathbf{U}_{\mathbf{W}^+})$$
$$\mathbf{U}_{V^-} = \mathcal{A}_{V^-V^-}^{-1} (\mathbf{F}_{V^-} - \mathcal{A}_{V^-W^+} \mathbf{U}_{\mathbf{W}^+})$$

Neuman-Dirichlet preconditioner: Harmonic extension

Auxiliary forms : • $b^+(u^+, v^+) = (\rho^+ \nabla u^+, \nabla v^+)_{\Omega^+} + \gamma_+ \langle |\boldsymbol{e}|\rho_+ [[\nabla u^+]], [[\nabla v^+]] \rangle_{\mathcal{E}_b^{\Gamma,+}}$

• $\mathcal{H}_h: W^+ \longrightarrow V_h$ discrete harmonic extension $\mathcal{H}_h \eta^+ := (\mathcal{H}^+ \eta^+, \mathcal{H}^- \eta^+)$ $\triangleright \mathcal{H}_+: W^+ \subset W_h \longrightarrow V^+$ discrete harmonic w.r.t. $b^+(\cdot, \cdot)$ $b^+(\mathcal{H}_+ \eta^+, v^+) = 0 \qquad \forall v^+ \in V_0^+, \qquad \mathcal{H}_+ \eta^+ = (\eta^+, 0) \quad \text{on } \Omega_h^\Gamma$

Neuman-Dirichlet preconditioner: Harmonic extension

Auxiliary forms : •
$$b^+(u^+, v^+) = (\rho^+ \nabla u^+, \nabla v^+)_{\Omega^+} + \gamma_+ \langle |\boldsymbol{e}|\rho_+ [[\nabla u^+]], [[\nabla v^+]] \rangle_{\mathcal{E}_h^{\Gamma,+}}$$

• $b^-(u^-, v^-) = (\rho^- \nabla u^-, \nabla v^-)_{\Omega^-} + \gamma_- \langle |\boldsymbol{e}|\rho_- [[\nabla u^-]], [[\nabla v^-]] \rangle_{\mathcal{E}_h^{\Gamma,-}}$
 $+ \sum_{K \in \mathcal{T}_h^{\Gamma}} \frac{\gamma_{\Gamma}}{h_K} \{\rho\}_H \int_{K \cap \Gamma} [u^+ - u^-] [0 - v^-] ds$

H_h: *W*⁺ → *V_h* discrete *harmonic extension H_hη*⁺ := (*H*⁺η⁺, *H*⁻η⁺)
 H₊: *W*⁺ ⊂ *W_h* → *V*⁺ discrete *harmonic* w.r.t. *b*⁺(·, ·)

$$b^+(\mathcal{H}_+\eta^+, v^+) = 0 \qquad orall \, v^+ \in V_0^+ \ , \qquad \mathcal{H}_+\eta^+ = (\eta^+, 0) \quad ext{ on } \Omega_h^{\Gamma}$$

 $\triangleright \ \mathcal{H}_{-}: W^{+} \subset W_{h} \longrightarrow V^{-} \text{ discrete harmonic w.r.t. } b^{-}(\cdot, \cdot)$ $b^{-}(\mathcal{H}_{-}\eta^{+}, v^{-}) = 0 \qquad \forall v^{-} \in V^{-}, \quad \mathcal{H}_{-}\eta^{+} = (\eta^{+}, (\mathcal{H}_{-}\eta^{+})^{-}) \in W^{+} \times W^{-} \quad \text{on } \Omega_{h}^{\Gamma}.$

Blanca Ayuso de Dios (UNIBO & IMATI)

Neuman-Dirichlet preconditioner: Harmonic extension

• $\mathcal{H}_h: W^+ \longrightarrow V_h$ discrete harmonic extension $\mathcal{H}_h \eta^+ := (\mathcal{H}^+ \eta^+, \mathcal{H}^- \eta^+)$

Auxiliary forms : •
$$b^+(u^+, v^+) = (\rho^+ \nabla u^+, \nabla v^+)_{\Omega^+} + \gamma_+ \langle |\mathbf{e}|\rho_+ [[\nabla u^+]], [[\nabla v^+]] \rangle_{\mathcal{E}_h^{\Gamma,+}}$$

• $b^-(u^-, v^-) = (\rho^- \nabla u^-, \nabla v^-)_{\Omega^-} + \gamma_- \langle |\mathbf{e}|\rho_- [[\nabla u^-]], [[\nabla v^-]] \rangle_{\mathcal{E}_h^{\Gamma,-}}$
 $+ \sum_{K \in \mathcal{B}_h^{\Gamma}} \frac{\gamma_{\Gamma}}{h_K} \{\rho\}_H \int_{K \cap \Gamma} [u^+ - u^-] [0 - v^-] ds$

 $\begin{array}{l} \triangleright \ \mathcal{H}_+ : W^+ \subset W_h \longrightarrow V^+ \ \text{discrete } harmonic \ \text{w.r.t. } b^+(\cdot, \cdot) \\ \\ b^+(\mathcal{H}_+\eta^+, \mathcal{H}_+\eta^+) = \min_{v^+ \in V_0^+} |v|_{V^+}^2 \qquad \text{if } |\cdot|_{V^+} \ \text{is a norm }. \end{array}$

 $\triangleright \mathcal{H}_{-}: W^{+} \subset W_{h} \longrightarrow V^{-}$ discrete *harmonic* w.r.t. $b^{-}(\cdot, \cdot)$

$$b^{-}(\mathcal{H}_{-}\eta^{+},\mathcal{H}_{-}\eta^{+}) \asymp \min_{\substack{\nu^{-} \in \mathcal{V}^{-}\\ (\nu^{-}-\mathcal{H}_{-}\eta^{+}) \in V_{0}^{+}}} \left(|\nu^{-}|_{\mathcal{V}^{-}}^{2} + \sum_{K \in \mathscr{T}_{h}^{\Gamma}} \frac{\gamma_{\Gamma}}{h_{K}} \{\rho\}_{H} \| [\eta^{+}-\mathcal{H}_{-}\eta^{+}] \|_{L^{2}(K \cap \Gamma)}^{2} \right).$$

Blanca Ayuso de Dios (UNIBO & IMATI)

Neuman-Dirichlet preconditioner: local Schur complements

• $\mathcal{H}_h u = (\mathcal{H}^+ u^+, \mathcal{H}^- u^-)$ discrete harmonic extension

$$< S\eta, w >_{\ell^{2}(W^{+})} = a_{h}(\mathcal{H}_{h}\eta^{+}, \mathcal{H}_{h}w^{+}) \qquad \forall \eta^{+}, w^{+} \in W^{+} ,$$

$$\begin{cases} < S_{+}\eta, w >_{\ell^{2}(W^{+})} := b^{+}(\mathcal{H}_{+}\eta^{+}, \mathcal{H}_{+}w^{+}) \qquad \forall \eta^{+}, w^{+} \in W^{+} , \\ < S_{-}\eta, w >_{\ell^{2}(W^{+})} := b^{-}(\mathcal{H}_{-}\eta^{+}, \mathcal{H}_{-}w^{+}) \qquad \forall \eta^{+}, w^{+} \in W^{+} . \end{cases}$$

Obvious Lemma: $\mathcal{S} \simeq \mathcal{S}_+ + \mathcal{S}_-$.

ND: Preconditioner for S based on S₊ (largest coefficient)

- Case 1: Ω⁺ is "not" a floating subdomain
- Case 2: Ω⁺ is floating

< 回 > < 三 > < 三 >

Case 1: Ω^+ is "not" a floating subdomain

• Idea: Choose S_+^{-1} as preconditioner (recall $\rho^+ \ge \rho^-$)

• $\partial \Omega^+ \cap \partial \Omega \neq \emptyset \implies |\cdot|_{V^+}$ is a norm (and $|\cdot|_{V^+} \asymp \sqrt{\rho_+} ||\cdot|_{H^1(\Omega_h^+)}$)

$$<\eta^+, \mathcal{S}_+\eta^+>_{\ell^2(W^+)}=b^+(\mathcal{H}_+\eta^+, \mathcal{H}_+\eta^+)=\min_{v^+\in V_0^+}|v|^2_{V^+}$$

 $\implies \mathcal{S}_+$ is invertible \checkmark

Theorem: Ω^+ is "not" a floating subdomain:

$$a_h(\mathcal{H}_h w^+, \mathcal{H}_h w^+) \lesssim b^+(\mathcal{H}_+ w, \mathcal{H}_+ w) \lesssim a_h(\mathcal{H}_h w^+, \mathcal{H}_h w^+)$$
$$\implies \qquad \mathcal{S}_+ \simeq \mathcal{S} = \mathcal{S}_+ + \mathcal{S}_-$$

• Ingredient: Extension operator from [Burman, Guzman, Sarkis (2017)] $\implies S_{\pm}^{-1}$ is Optimal and Robust preconditioner

Blanca Ayuso de Dios (UNIBO & IMATI)

Simple Solvers for CutFEM

CMO-Oaxaca, July 2018 24 / 36

< 日 > < 同 > < 回 > < 回 > < □ > <

Case 2: Ω^+ is a floating subdomain. **One Level**

- $\partial \Omega^+ \cap \partial \Omega \neq \emptyset \implies |\cdot|_{V^+} \text{ is NOT a norm} \implies \nexists S_+^{-1} XX$
- One-Level method: regularize $\widehat{S}_{+,reg}$

$$<\widehat{\mathcal{S}}_{+,\textit{reg}}\eta^+, w^+ >_{\ell^2(W^+)} = <\mathcal{S}_+\eta^+, w^+ >_{\ell^2(W^+)} + \epsilon < \eta^+, w^+ >_{\ell^2(W^+)} \quad \forall \, \eta^+, w^+ \in W^+ \; .$$

$$b_{\Gamma}^{+}(\mathcal{H}_{+}w,\mathcal{H}_{+}w) = \min_{\substack{v^{+}\in V^{+}\\(v^{+}-\mathcal{H}_{+}w)\in V_{0}^{+}}} \left(|v^{+}|_{V^{+}} + \frac{\{\rho\}_{H}}{D_{+}} ||v^{+}||_{L^{2}(\Gamma)}^{2} \right)$$
$$b_{M}^{+}(\mathcal{H}_{+}^{M}w,\mathcal{H}_{+}^{M}w) \min_{\substack{v^{+}\in V^{+}\\(v^{+}-\mathcal{H}_{+}w)\in V_{0}^{+}}} \left(|v^{+}|_{V^{+}} + \frac{\{\rho\}_{H}}{D_{+}^{2}} ||v^{+}||_{L^{2}(\Omega_{h}^{+})}^{2} \right)$$

Optimal & Robust preconditioner

$$\mathcal{S} \lesssim \mathcal{S}_{+}^{\mathsf{\Gamma}} \lesssim C_0 \mathcal{S} \qquad \mathcal{S} \lesssim \mathcal{S}_{+}^{\mathsf{M}} \lesssim \theta C_0 \mathcal{S} \qquad \mathcal{C}$$

$$\mathcal{D}_0\simeq rac{ ext{diam}(\Omega^-)}{ ext{diam}(\Omega^+)} \quad heta\leq 1$$

< 回 > < 三 > < 三 >

Blanca Ayuso de Dios (UNIBO & IMATI)

Case 2: Ω^+ is a floating subdomain. Two-Level

• $\partial \Omega^+ \cap \partial \Omega \neq \emptyset \implies |\cdot|_{V^+}$ is NOT a norm $\implies \nexists S_+^{-1} XX$

- Two -Level method: consider splitting $W^+ = \widetilde{W} \oplus W^0$
 - $W^0 = \ker(\mathcal{S}_+)$ (one dimensional coarse space) • $\widetilde{W} \simeq W^+ \smallsetminus \mathbb{R}$ • define $\widehat{\mathcal{S}}_+ = \mathcal{S}_+ |_{\widetilde{W}} : \widetilde{W} \longrightarrow \widetilde{W}$

$$\mathcal{B}_{two} = \widehat{\mathcal{S}}_{+}^{-1} + \mathcal{S}_{0}^{-1}$$

with
$$(\mathcal{S}_0\eta_0, w_0)_{\ell^2(W^+)} = a_h(\mathcal{H}_h\eta_0, \mathcal{H}_hw_0) \quad \forall \eta_0, w_0 \in W_0$$
.

Optimal & Robust preconditioner

$$\mathcal{S} \lesssim \widehat{\mathcal{S}}_+ + \mathcal{S}_0 \lesssim \mathcal{S}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

 \rightarrow classical Schwarz theory...

Ω^+ non-floating: Optimality wrt *h*

- $\Omega^+ = (0, 0.45) \times (0, 1)$ and $\Omega^- = (0.45, 1) \times (0, 1)$
- Q^1 -elements. $\rho^+ = \rho^- = 1$
- PCG: 10⁻⁶ residual reduction stopping criteria

1/h	full cg		schur no	schur noprec		schur ND prec	
	κ2	it	κ_2	it	κ_2	it	
8	4.16e+2	48	62.20	16	2.05	6	
16	1.63e+3	94	1.44e+2	25	2.04	6	
32	6.49e+3	183	3.18e+2	40	2.03	6	
64	2.59e+4	370	6.75e+2	62	2.01	5	
128	1.03e+5	732	1.39e+3	91	2.01	5	
256	4.14e+5	1422	2.84e+3	137	2.01	5	

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ω^+ non-floating:: Robustness wrt ρ (*soft inclusion*)

- $\Omega^+ = (0, 0.45) \times (0, 1)$ and $\Omega^- = (0.45, 1) \times (0, 1)$
- Q^1 -elements. $h = 1/64, \rho^- = 1$
- PCG: 10⁻⁶ residual reduction stopping criteria

ρ_+	full cg		schur no	schur noprec		schur ND prec	
	κ_2	it	κ_2	it	κ_2	it	
1	2.59e+4	370	6.75e+2	62	2.01	5	
10 ²	4.41e+5	2247	1.30e+3	82	1.06	4	
10 ⁴	4.27e+7	11567	1.34e+3	83	1.01	3	
10 ⁶	4.27e+9	25685	1.35e+3	83	1.01	3	

Ω^+ floating: Optimality w.r.t *h*

- $\bullet \ \Omega^+$ a disk of radius 0.15 and $\Omega^- = (0,1)^2 \setminus \bar{\Omega}^+$
- Q^1 -elements $\rho^+ = \rho^- = 1$
- PCG: 10⁻⁶ residual reduction stopping criteria

1/h	full cg		schur	schur <i>b</i> _Γ		schur b _M	
	κ_2	it	κ_2	it	κ_2	it	
8	6.38e+3	252	9.92	12	3.51	14	
16	1.77e+4	520	10.54	14	2.11	14	
32	5.83e+4	863	11.92	18	2.09	14	
64	2.14e+4	1625	13.54	22	2.08	14	
128	8.19e+5	3163	14.65	24	2.13	14	
256	3.20e+6	6140	15.97	24	2.19	14	

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ω^+ floating: Optimality w.r.t *h*

- $\bullet \ \Omega^+$ a disk of radius 0.15 and $\Omega^- = (0,1)^2 \setminus \bar{\Omega}^+$
- Q^1 -elements $\rho^+ = \rho^- = 1$
- PCG: 10⁻⁶ residual reduction stopping criteria

1/h	full cg		Two-L	.evel	schur b _M	
	κ2	it	κ_2	it	κ_2	it
8	6.38e+3	252	6.76	11	3.51	14
16	1.77e+4	520	6.39	15	2.11	14
32	5.83e+4	863	6.29	16	2.09	14
64	2.14e+4	1625	6.34	16	2.08	14
128	8.19e+5	3163	6.37	16	2.13	14
256	3.20e+6	6140	6.39	16	2.19	14

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ω^+ floating: Robustness wrt ρ (hard inclusion)

- $\bullet \ \Omega^+$ a disk of radius 0.15 and $\Omega^- = (0,1)^2 \setminus \bar{\Omega}^+$
- Q^1 -elements. $h = 1/64, \rho^- = 1$
- PCG: 10⁻⁶ residual reduction stopping criteria

ρ_+	full	schur	·b _Γ	schu	r b _M	
	κ_2	it	κ_2	it	κ_2	it
1	2.14e+5	1625	14.65	24	2.13	14
10 ²	2.00e+7	12906	9.95	8	1.83	5
10 ⁴	2.00e+9	>100000	9.93	5	1.83	4
10 ⁶	5.70e+10	>100000	9.93	4	1.83	3
10 ⁸	4.20e+12	>100000	9.93	3	1.83	3

Ω^+ floating: Robustness wrt ρ (hard inclusion)

- $\bullet \ \Omega^+$ a disk of radius 0.15 and $\Omega^- = (0,1)^2 \setminus \bar{\Omega}^+$
- Q^1 -elements. $h = 1/64, \rho^- = 1$
- PCG: 10⁻⁶ residual reduction stopping criteria

$ ho_+$	full	Two-L	.evel	schu	r b _M	
	κ_2	it	κ_2	it	κ_2	it
1	2.14e+5	1625	6.37	16	2.13	14
10 ²	2.00e+7	12906	6.33	6	1.83	5
10 ⁴	2.00e+9	>100000	6.33	4	1.83	4
10 ⁶	5.70e+10	>100000	6.33	3	1.83	3
10 ⁸	4.20e+12	>100000	6.33	3	1.83	3

Ω^+ floating: Optimality while decreasing diam(Ω^+)

 Ω^+ a disk of radius D^+ and $\Omega^-=(0,1)^2\setminus\bar{\Omega}^+$

- \mathbb{Q}^1 -elements $\rho^+ = \rho^- = 1$; h=1/64
- PCG: 10⁻⁶ residual reduction stopping criteria

diam(Ω^+)	full cg		schur	schur <i>b</i> _Γ		schur b _M	
	κ2	it	κ_2	it	κ_2	it	
0.4	6.38e+3	252	4.91	21	7.31	18	
0.2	1.77e+4	520	14.65	24	2.13	14	
0.1	5.83e+4	863	22.88	29	2.21	14	
0.05	2.14e+4	1625	28.34	41	3.20	15	
0.02	8.19e+5	3163	33.65	54	5.67	15	
0.01	3.20e+6	6140	38.89	59	10.46	17	

3

Ω^+ floating: Optimality while decreasing diam(Ω^+)

 Ω^+ a disk of radius D^+ and $\Omega^-=(0,1)^2\setminus\bar{\Omega}^+$

- \mathbb{Q}^1 -elements $\rho^+ = \rho^- = 1$; h=1/64
- PCG: 10⁻⁶ residual reduction stopping criteria

diam(Ω^+)	full cg		Two-L	evel	schur ND prec	
	κ2	it	κ_2	it	κ2	it
0.4	6.38e+3	252	21.46	19	7.31	18
0.2	1.77e+4	520	6.27	16	2.13	14
0.1	5.83e+4	863	3.75	14	2.21	14
0.05	2.14e+4	1625	2.65	14	3.20	15
0.02	8.19e+5	3163	2.49	14	5.67	15
0.01	3.20e+6	6140	3.25	11	10.46	17

3

A (10) A (10)

 Ω^+ floating: Optimality while decreasing diam(Ω^+)

- Ω^+ a disk of radius D^+ and $\Omega^- = (0,1)^2 \setminus \bar{\Omega}^+$
- \mathbb{Q}^2 -elements $\rho^+ = \rho^- = 1$; h=1/64
- PCG: 10⁻⁶ residual reduction stopping criteria

diam(Ω^+)	Two level		schur N	D prec
	κ2	it	κ2	it
0.4	21.39	10	2.61	14
0.2	6.56	9	3.25	14
0.1	3.86	8	6.04	16
0.05	2.79	9	9.19	17
0.02	2.81	9	16.31	21
0.01	3.78	9	45.07	23

3

イベト イラト イラト

Concluding remarks & Outlook

- Balancing NN (using the whole fat trace space)
- extension to Stokes
- Space decomposition approach ?
- AMG?
- Still quite a few things to understand ?

э

< 回 > < 回 > < 回 >