p-adic L-functions for $\mathrm{GL}(n+1) \times \mathrm{GL}(n)$ III

Fabian Januszewski

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

www.kit.edu

Overview

Previous lectures:

- GL(2) / F adelically (Kenichi)
- Rankin-Selberg L-functions following Jacquet, Piatetski-Shapiro and Shalika
- The relative modular symbol and algebraicity of special values
- Archmedean periods: Non-vanishing and period relations

Today's lectures:

- p-adic distributions attached to finite slope classes (Kazhdan-Mazur-Schmidt, Schmidt, J.)
- Boundedness in the nearly ordinary case (Schmidt, J.)
- Functional equation (J.)
- Manin congruences and independence of weight (J.)
- Interpolation formulae (Schmidt, J.)

Table of Contents

Cohomological construction of p-adic distributions
Cohomological setup
The modular symbol
The distribution relation
The p-adic measure
Functional equation
Manin congruences Independence of weight Non-abelian measures

Setup
The modular symbol
Properties

Cohomological setup

F / \mathbf{Q} number field, \mathbf{A} adèles over $\mathbf{Q}, \mathbf{A}_{F}=\mathbf{A} \otimes_{\mathbf{Q}} F$

$$
\begin{aligned}
G & =G_{n+1} \times G_{n}=\operatorname{res}_{F / \mathbf{Q}} \mathrm{GL}(n+1) \times \operatorname{GL}(n) \\
H & =G_{n}=\operatorname{res}_{F / \mathbf{Q}} \mathrm{GL}(n) \\
\Delta & : H \rightarrow G, g \mapsto(\operatorname{diag}(g, 1), g) \\
S & \subseteq G \text { maximal } \mathbf{Q} \text {-split torus in the center (rank 2) } \\
K_{\infty} & \subseteq G(\mathbf{R}) \text { max'। compact } \\
\widetilde{K}_{\infty} & =S(\mathbf{R})^{0} K_{\infty} \subseteq G(\mathbf{R}) \\
L_{\infty} & =\widetilde{K}_{\infty} \cap H(\mathbf{R}) \subseteq H(\mathbf{R}) \quad \text { max'l compact } \\
K & \subseteq G\left(\mathbf{A}^{(\infty)}\right) \text { compact open } \\
L & \subseteq H\left(\mathbf{A}^{(\infty)}\right) \text { compact open } \\
\mathscr{X}(K) & =G(\mathbf{Q}) \backslash G(\mathbf{A}) / \widetilde{K}_{\infty} K \\
\mathscr{Y}(L) & =H(\mathbf{Q}) \backslash H(\mathbf{A}) / L_{\infty} L \\
i & : \mathscr{Y}(L) \rightarrow \mathscr{X}(K) \text { proper, whenever } L \subseteq K
\end{aligned}
$$

Cohomological setup

p a rational prime, E / \mathbf{Q}_{p} finite, $\mathcal{O} \subseteq E$ its valuation ring
$B=T U$ upper Borel in G
$\mathfrak{u}: \mathcal{O}$-Lie algebra of U
λ : B-dominant E-rational weight of G
$L_{\lambda, E} \quad$: irred. rep. of G of heighest wt λ over E
$v_{0}: B$-lowest weight vector in $L_{\lambda, E}$
$L_{\lambda, \mathcal{O}}=U(\mathfrak{u}) \cdot v_{0} \subseteq L_{\lambda, E} \quad \mathcal{O}$-lattice
$L_{\lambda, A} \quad$ for $A \in\left\{E, \mathcal{O}, E / \mathcal{O}, \mathcal{O} / p^{\beta} \mathcal{O}, p^{-\beta} \mathcal{O} / \mathcal{O}\right\}$
$g \in G\left(\mathbf{A}^{(\infty)}\right)$
$g L_{\mathcal{O}}=L_{\lambda, E} \cap g \cdot\left(L_{\mathcal{O}} \otimes \mathbf{z}_{p} \hat{\mathbf{z}}\right) \quad$ for any \mathcal{O}-lattice $L_{\mathcal{O}} \subseteq L_{\lambda, E}$
$t_{g} \quad: \quad \mathscr{X}\left(\mathrm{gKg}^{-1}\right) \rightarrow \mathscr{X}(\mathrm{K}) \quad$ right translation by g
$T_{g}: t_{g}^{*} \underline{\mathcal{O}}_{\mathcal{O}} \rightarrow \underline{g L_{\mathcal{O}}}$ canonical map of associated sheaves
$t_{g}^{\lambda} \quad: \quad \Gamma\left(U, \underline{L}_{\mathcal{O}}\right) \rightarrow \Gamma\left(U g^{-1}, \underline{g L_{\mathcal{O}}}\right) \quad$ 'normalized' pullback

Cohomological setup

For $x \in F_{p}^{\times}=\left(F \otimes_{\mathbf{Q}} \mathbf{Q}_{p}\right)^{\times}$and $\alpha \geq \alpha^{\prime} \geq 0$ put:

$$
\begin{aligned}
t_{x} & =\operatorname{diag}\left(x^{n}, x^{n-1}, \ldots, x\right) \in \operatorname{GL}_{n}\left(F_{p}\right)=H\left(\mathbf{Q}_{p}\right) \\
I_{\alpha^{\prime}, \alpha} & =\left\{k \in G\left(\mathbf{Z}_{p}\right) \mid k \in B\left(\mathbf{Z}_{p} / p^{\alpha}\right) \text { and } k \in U\left(\mathbf{Z}_{p} / p^{\alpha^{\prime}}\right)\right\} \\
U_{p} & =I_{\alpha^{\prime}, \alpha} \Delta\left(t_{p}\right) I_{\alpha^{\prime}, \alpha}=\quad \bigsqcup_{u \in U\left(\mathbf{Z}_{p}\right) / t_{p} U\left(\mathbf{Z}_{p}\right) t_{p}^{-1}} u t_{p} I_{\alpha^{\prime}, \alpha} \\
& =\prod_{\mathfrak{p} \mid p}\left(U_{p} \otimes U_{\mathfrak{p}}^{\prime}\right)^{v_{p}(p)} \\
K_{\alpha^{\prime}, \alpha} & =K^{(p)} \times I_{\alpha^{\prime}, \alpha}
\end{aligned}
$$

p-optimal Hecke action: Put for $v \in L_{\lambda, E}$ and $t \in T\left(\mathbf{Q}_{p}\right)$:

$$
t \bullet v:=\lambda^{\vee}(t) \cdot(t \cdot v)=\left(-\lambda^{w_{0}}\right)(t) \cdot(t \cdot v)
$$

Then for any $\phi \in H_{?}^{\bullet}\left(\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right) ; \underline{L}_{\lambda, A}\right)$:

$$
U_{p} \bullet \phi \in H_{?}^{\bullet}\left(\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right) ; L_{\lambda, A}\right)
$$

The modular symbol

Let $w_{n} \in \mathrm{GL}_{n}(\mathbf{Z})$ denote the antidiagonal matrix. Introduce

$$
\begin{aligned}
h_{n} & =\left(\begin{array}{ccc}
& & 1 \\
w_{n} & \vdots \\
& & \vdots \\
0 & \ldots & 0 \\
1
\end{array}\right) \in \operatorname{GL}_{n+1}(\mathbf{Z}) \\
h & =\left(h_{n} \operatorname{diag}\left(t_{-1}, 1\right), \mathbf{1}_{n}\right) \in G\left(\mathbf{Z}_{p}\right) \\
g_{\beta} & =h t_{p}^{\beta} \in G\left(\mathbf{Z}_{p}\right)
\end{aligned}
$$

Proposition (Schmidt, J.)

For $\beta \geq \alpha \geq \alpha^{\prime}, \alpha>0, \mathfrak{s}_{\beta}:=H\left(\mathbf{Q}_{p}\right) \cap g_{\beta} I_{\alpha^{\prime}, \alpha} g_{\beta}^{-1}$ is independent of α and α^{\prime} and

$$
\begin{aligned}
\left(H\left(\mathbf{Z}_{p}\right): \mathfrak{I}_{\beta}\right) & =\prod_{v \mid p \mu=1}^{n}\left(1-q_{v}^{-\mu}\right)^{-1} \cdot p^{\beta \frac{(n+2)(n+1) n+(n+1) n(n-1)}{6}} \\
\operatorname{det} \mathfrak{I}_{\beta} & =1+p^{\beta} \mathcal{O}_{p}
\end{aligned}
$$

The modular symbol

This implies:

$$
\begin{aligned}
C\left(p^{\beta}\right) & =F^{\times} \backslash \mathbf{A}_{F}^{\times} / F_{\infty}^{+} \cdot \operatorname{det}\left(g_{\beta} K_{\alpha^{\prime}, \alpha} g_{\beta}^{-1} \cap H\left(\mathbf{A}^{(\infty)}\right)\right) \\
& =F^{\times} \backslash \mathbf{A}_{F}^{\times} / F_{\infty}^{+} \cdot \operatorname{det}\left(K^{(p)} \cap H\left(\mathbf{A}^{(p \infty)}\right)\right) \cdot\left(1+p^{\beta} \mathcal{O}_{p}\right)
\end{aligned}
$$

This class group parametrizes the connected components of $\mathscr{Y}\left(L_{\beta}\right)$ where

$$
L_{\beta}:=g_{\beta} K_{\alpha^{\prime}, \alpha} g_{\beta}^{-1} \cap H\left(\mathbf{A}^{(\infty)}\right)
$$

only depends on β.
Assume there is $j \in \mathbf{Z}$ and a non-zero H-intertwining

$$
\eta_{j}: L_{\lambda, E} \rightarrow\left(N_{F / \mathbf{Q}} \otimes \operatorname{det}\right)^{\otimes j}=: E_{(j)}
$$

Fact: \mathfrak{h} and $g_{0} \mathfrak{b}^{-} g_{0}^{-1}$ are transversal. Therefore, $\eta_{j}\left(g_{0} v_{0}\right) \neq 0$ and may define

$$
\eta_{j, A}: L_{\lambda, A} \rightarrow A_{(j)}, \quad v \mapsto \frac{\eta_{j}(v)}{\eta_{j}\left(g_{0} v_{0}\right)}
$$

The modular symbol

For $x \in C\left(p^{\beta}\right)$, define the modular symbol

$$
\begin{aligned}
\mathscr{P}_{A, x, \beta}^{\lambda, j}: \quad H_{\mathrm{c}, \mathrm{ord}}^{\operatorname{dim} \mathscr{Y}}\left(\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right) ; \underline{L_{\lambda, A}}\right) & \rightarrow A_{(j)}, \\
\phi \mapsto & \int_{\mathscr{Y}\left(L_{\beta}\right)[x]} \eta_{j, A} \circ i^{*}\left[\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot t_{g_{\beta}}^{\lambda}\right]\left(U_{p}^{-\beta} \bullet \phi\right) .
\end{aligned}
$$

Put

$$
L_{\lambda, \mathcal{O}}^{x, \beta}=\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot d_{x} \cdot U\left(\mathfrak{u}_{\mathcal{O}}^{\beta}\right) \cdot g_{\beta} v_{0}, \quad L_{\lambda, A}^{x, \beta}:=L_{\lambda, \mathcal{O}}^{x, \beta} \otimes A .
$$

The elementary relation $L_{\lambda, A}^{x, \beta} \subseteq L_{\lambda, A}^{1,0}$ shows

$$
\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot t_{g_{\beta}}^{\lambda}\left(U_{p}^{-\beta} \bullet \phi\right) \in L_{\lambda, A}^{x, \beta} \subseteq L_{\lambda, A}^{1,0}
$$

Hence $\mathscr{P}_{A, X, \beta}^{\lambda, j}$ is well defined. Define:

$$
\mu_{A, \beta}^{\lambda, j}(\phi):=\sum_{x \in C\left(p^{\beta}\right)} \mathscr{P}_{A, x, \beta}^{\lambda, j}(\phi) \cdot x \in A_{(j)} \otimes_{\mathcal{O}} \mathcal{O}\left[C\left(p^{\beta}\right)\right]=: A_{(j)}\left[C\left(p^{\beta}\right)\right]
$$

The distribution relation

For any $\beta \geq \beta^{\prime}>0$ the canonical projection $C\left(p^{\beta}\right) \rightarrow C\left(p^{\beta^{\prime}}\right)$ induces an \mathcal{O}-linear epimorphism

$$
\operatorname{res}_{\beta^{\prime}}^{\beta}: \quad A_{(j)}\left[C\left(p^{\beta}\right)\right] \rightarrow A_{(j)}\left[C\left(p^{\beta^{\prime}}\right)\right]
$$

Proposition (Schmidt, J.)

For any cohomology class ϕ and any $\beta \geq \beta^{\prime}>0$ we have the distribution relation

$$
\operatorname{res}_{\beta^{\prime}}^{\beta}\left(\mu_{A, \beta}^{\lambda, j}(\phi)\right)=\mu_{A, \beta^{\prime}}^{\lambda, j}(\phi)
$$

Lemma
Let $u \in U\left(\mathbf{Z}_{p}\right), \beta>0$. Then:

$$
\begin{equation*}
\exists k_{u} \in I_{\alpha, \alpha}: \quad h t_{p}^{\beta} \cdot u t_{p}=h t_{p}^{\beta+1} \cdot k_{u} \tag{i}
\end{equation*}
$$

(ii) For any $k_{u}=\left(k_{u}^{\prime}, k_{u}^{\prime \prime}\right)$ in (1) the residue class det $k_{u}^{\prime}\left(\bmod p^{\beta+1}\right)$ is uniquely determined by $u \in U\left(\mathbf{Z}_{p}\right) / t_{p} U\left(\mathbf{Z}_{p}\right) t_{p}^{-1}$ and lies in $1+p^{\beta} \mathcal{O}_{p}$.

$$
\begin{equation*}
U\left(\mathbf{Z}_{p}\right) / t_{p} U\left(\mathbf{Z}_{p}\right) t_{p}^{-1} \rightarrow\left(1+p^{\beta} \mathcal{O}_{p}\right) /\left(1+p^{\beta+1} \mathcal{O}_{p}\right), \quad u \mapsto \operatorname{det} k_{u}^{\prime}, \tag{iii}
\end{equation*}
$$

is a surjective group homomorphism.

The distribution relation

Proof (of the Proposition): Using the Lemma, unfold

$$
\begin{aligned}
\mathscr{P}_{A, x, \beta}^{\lambda, j}(\phi) & =\mathscr{P}_{A, x, \beta}^{\lambda, j}\left(U_{p} U_{p}^{-1} \bullet \phi\right) \\
& =\int_{\mathscr{Y}\left(L_{\beta}\right)[x]} \eta_{j, A} \circ i^{*}\left[\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot t_{\left.g_{\beta}\right]}^{\lambda}\right]\left(U_{p} U_{p}^{-(\beta+1)} \bullet \phi\right) \\
& =\int_{\left.\mathscr{Y}\left(L_{\beta}\right)[x]\right]} \sum_{U \in U\left(\mathbf{z}_{p}\right) / t_{p} U\left(\mathbf{z}_{p}\right) t_{p}^{-1}} \eta_{j, A} \circ i^{*}\left[\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta+1}\right) \cdot t_{\left.g_{\beta} u t_{p}\right]}^{\lambda}\right]\left(U_{p}^{-(\beta+1)} \phi\right) \\
& =\sum_{u}[\operatorname{some} \operatorname{index}]^{-1} \int \eta_{j, A} \circ i^{*}\left[\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta+1}\right) \cdot t_{g_{\beta+1}}^{\lambda}\right]\left(U_{p}^{-(\beta+1)} \phi\right) \\
& =\sum_{y(\bmod p)} \mathscr{P}_{A, x+y p \beta, \beta+1}^{\lambda,}\left(L_{\beta+1}\right)\left[x \operatorname{det}\left(k_{u}^{\prime}\right)\right]
\end{aligned}
$$

The p-adic measure

By the previous Proposition we have a projective system $\left(\mu_{A, \beta}^{\lambda, j}(\phi)\right)_{\beta}$. Put

$$
\begin{aligned}
C_{F}\left(p^{\infty}\right) & =\underset{\beta}{\lim } C_{F}\left(p^{\beta}\right) \\
\mu_{A}^{\lambda, j}(\phi) & =\underset{\beta}{\lim _{\beta}} \mu_{A, \beta}^{\lambda, j}(\phi)
\end{aligned}
$$

Summing up, we obtain an \mathcal{O}-linear map

$$
\mu_{A}^{\lambda, j}: \quad H_{\mathrm{c}, \text { ord }}^{\mathrm{dim} \mathscr{Y}}\left(\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right) ; \underline{L}_{\lambda, A}\right) \rightarrow A_{(j)}\left[\left[C_{F}\left(p^{\infty}\right)\right]\right]
$$

For $A=\mathcal{O}$ we obtain for every nearly ordinary ϕ a p-adic measure

$$
\mu_{\mathcal{O}}^{\lambda_{\mathcal{O}} j}(\phi) \in \mathcal{O}\left[\left[C_{F}\left(p^{\infty}\right)\right]\right]
$$

For $A=E$ we obtain for every finite slope ϕ a p-adic distribution $\mu_{E}^{\lambda, j}(\phi)$ whose growth is bounded in terms of the slope.

Functional equation

Consider the involution of GL(n):

$$
\iota: \quad g \mapsto w_{n}^{t} g^{-1} w_{n}
$$

stabilizes B_{n}, T_{n}, U_{n}, hence induces an involution on the Hecke algebra at p sends λ to λ^{\vee}, hence induces identifications $L_{\lambda^{\vee}, A} \cong \iota^{*}\left(L_{\lambda, A}\right)$, get

$$
(-)^{\vee}: \quad L_{\lambda, A} \rightarrow L_{\lambda}, A, \quad v \mapsto v^{\vee}
$$

likewise for sheaves, since ι stabilizes $\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right)$ and $\mathscr{Y}_{n}\left(L_{\beta}\right)$. Therefore, ι induces an involution

$$
H_{\mathrm{c}, \text { ord }}^{\mathrm{dim} \mathscr{Y}}\left(\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right) ; \underline{L}_{\lambda, A}\right) \rightarrow H_{\mathrm{c}, \text { ord }}^{\operatorname{dim} \mathscr{Y}}\left(\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right) ; \underline{L}_{\lambda, ~}, A\right), \quad \phi \mapsto \phi^{\vee}
$$

Proposition (Functional equation, J.)

$$
\mu_{A}^{\lambda, j}(\phi)(x)=\mu_{A}^{\lambda^{\vee}, \mathbf{w}-j}\left(\phi^{\vee}\right)\left((-1)^{n} x^{-1}\right)
$$

Proof: Relies on $\iota\left(g_{\beta}\right)=w_{0} \cdot{ }^{t} g_{\beta}^{-1} \cdot w_{0} \in\left(\left(\mathbf{1}_{n+1}, t_{p}^{\beta}\right) \iota_{\alpha^{\prime}, \alpha}\left(\mathbf{1}_{n+1}, t_{p}^{-\beta}\right) \cap H\right) g_{\beta} \iota_{\alpha^{\prime}, \alpha}$

Manin congruences

Goal: Relate $\mu_{A}^{\lambda_{A} j_{1}}(\phi)$ and $\mu_{A}^{\lambda_{A} j_{2}}(\phi)$ for $j_{1} \neq j_{2}$.
Observe that by construction,

$$
i^{*}\left[\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot t_{g_{\beta}}^{\lambda}\right]\left(U_{p}^{-\beta} \bullet \phi\right) \in H_{c}^{\operatorname{dim} \mathcal{Y}}\left(\mathscr{Y}\left(L_{\beta}\right) ; \underline{L}_{\lambda, \mathcal{O}}^{x, \beta}\right)
$$

where

$$
\begin{aligned}
L_{\lambda, \mathcal{O}}^{x, \beta} & =d_{x} h \cdot\left(t_{p}^{\beta} \cdot L_{\lambda, \mathcal{O}}\right) \\
& =\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot d_{x} g_{\beta} \cdot L_{\lambda, \mathcal{O}}
\end{aligned}
$$

Therefore, we have to answer the question

$$
\eta_{j, \mathcal{O}}\left(L_{\lambda, \mathcal{O}}^{x, \beta}\right)=? \quad\left(\bmod p^{\beta} L_{\lambda, \mathcal{O}}\right)
$$

In the case of $\mathrm{GL}(2)$, Manin solved this by explicit computation in $\operatorname{Sym}^{k-2} \mathcal{O}^{2}$
This approach also works in the presence of complex places (Namikawa, 2016)
This was also successful for $n=2, \lambda=(1,0,-1) \otimes(1,0)($ Schwab, 2015 $)$

Manin congruences

Let $\beta \geq 0$. Recall $g_{\beta}=h t_{p}^{\beta}$. Write ${ }^{g_{\beta}} a=g_{\beta} a g_{\beta}^{-1}$.
Lemma
(i) We have $g_{\beta} \mathfrak{b}_{E}^{-}=g_{0} \mathfrak{b}_{E}^{-}$
(ii) The subgroups H and ${ }^{g_{\beta}} B^{-}$are transversal, i.e.

$$
\mathfrak{g}_{E}=\mathfrak{h}_{E} \oplus^{g_{\beta} \mathfrak{b}_{E}^{-}}
$$

$$
\begin{equation*}
U\left(\mathfrak{g}_{E}\right)=U\left(\mathfrak{h}_{E}\right) \otimes_{E} U\left({ }_{\beta}^{g_{\beta}} \mathfrak{b}_{E}^{-}\right) \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
U\left({ }^{\left.g_{\beta} \mathfrak{u}_{\mathcal{O}}\right) \subseteq\left(\mathcal{O}+p^{\beta} U\left(\mathfrak{h}_{\mathcal{O}}\right)\right) \otimes_{\mathcal{O}}\left(\mathcal{O}+p^{\beta} \cup\left(g_{0} \mathfrak{b}_{\mathcal{O}}^{-}\right)\right), ~\left(\frac{10}{}\right) .}\right. \tag{iv}
\end{equation*}
$$

This is of relevance because

$$
L_{\lambda, \mathcal{O}}^{x, \beta}=\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot d_{x} \cdot U\left({ }^{g_{\beta}} \mathfrak{u}_{\mathcal{O}}\right) \cdot g_{\beta} v_{0} .
$$

Manin congruences

A direct computation using the Lemma shows

Proposition

(i) For every non-zero H-invariant $\eta_{j}: L_{\lambda, E} \rightarrow E_{(j)}$ we have $\eta_{j}\left(g_{0} v_{0}\right) \neq 0$.
(ii) For all $x \in \mathcal{O}^{\times}, \beta \geq 0, v \in L_{\lambda, \mathcal{O}}^{x, \beta}$, there is a constant $\Omega_{p}^{\beta, v} \in \mathcal{O}$ with:

$$
\eta_{j}(v) \equiv N_{F / \mathbf{Q}}(x)^{j} \cdot \Omega_{p}^{\beta, v} \cdot \eta_{j}\left(g_{0} v_{0}\right) \quad\left(\bmod \mathcal{O} \cdot p^{\beta} \eta_{j}\left(g_{0} v_{0}\right)\right)
$$

(iii) For all j_{1} and j_{2} admitting H -invariant functionals:

$$
\eta_{j_{1}, \mathcal{O}}(v) \cdot N_{F / \mathbf{Q}}^{j_{2}}(x) \equiv \eta_{j_{2}, \mathcal{O}}(v) \cdot N_{F / \mathbf{Q}}^{j_{1}}(x) \quad\left(\bmod p^{\beta}\right)
$$

Theorem (J., 2017)

Assume that two non-zero H-linear $\eta_{j_{1}}, \eta_{j_{2}}: L_{\lambda, E} \rightarrow E_{\left(j_{i}\right)}$ are given. Then

$$
\omega_{F}^{j_{2}}(x)\langle x\rangle_{F}^{j_{2}} \cdot \mu_{\mathcal{O}}^{\lambda_{1} j_{1}}(\phi)(x)=\omega_{F}^{j_{1}}(x)\langle x\rangle_{F}^{j_{1}} \cdot \mu_{\mathcal{O}}^{\lambda_{i} j_{2}}(\phi)(x)
$$

Independence of weight

For $A=p^{-\alpha} \mathcal{O} / \mathcal{O}$, our construction also yields a map

$$
\mu_{\alpha}^{\lambda, j}: \quad H_{\mathrm{c}, \text { ord }}^{\operatorname{dim} \mathscr{Y}}\left(\mathscr{X}\left(K_{\alpha, \alpha}\right) ; \underline{L}_{\lambda, p^{-\alpha} \mathcal{O} / \mathcal{O}}\right) \rightarrow\left(p^{-\alpha} \mathcal{O} / \mathcal{O}\right)_{(j)}\left[\left[C\left(p^{\infty}\right)\right]\right]
$$

Passing to the direct limit gives us

$$
\mu^{\lambda, j}: \quad \mathcal{H}_{\mathrm{c}, \text { ord }}^{\operatorname{dim} \mathscr{Y}}\left(K_{\infty, \infty} ; \underline{L}_{\lambda, E / \mathcal{O}}\right) \rightarrow(E / \mathcal{O})_{(j)}\left[\left[C\left(p^{\infty}\right)\right]\right]
$$

Theorem (Independence of weight, J., 2017)
For any λ with $\left(L_{\lambda, E}\right)^{H} \neq 0$ we have a commuting square

$$
\begin{gathered}
\mathcal{H}_{\mathrm{c}, \text { ord }}^{\operatorname{dim} \mathscr{Y}}\left(K_{\infty, \infty} ; \underline{L}_{\lambda, K / \mathcal{O}}\right) \xrightarrow{\mu^{\lambda, 0}}(K / \mathcal{O})_{(0)}\left[\left[C\left(p^{\infty}\right)\right]\right] \\
\pi_{\lambda} \downarrow \\
\mathcal{H}_{\mathrm{c}, \text { ord }}^{\operatorname{dim} \mathscr{Y}}\left(K_{\infty, \infty} ; \underline{K / \mathcal{O})} \xrightarrow{\mu^{0,0}}(K / \mathcal{O})_{(0)}\left[\left[C\left(p^{\infty}\right)\right]\right]\right.
\end{gathered}
$$

where π_{λ} is Hida's weight comparison map.

Non-abelian measures

By specialization, we may consider

$$
\begin{aligned}
L_{p}^{\text {univ }}:=\int_{C\left(p^{\infty}\right)} d \mu^{\lambda, 0} & \in \operatorname{Hom}_{\mathcal{O}}\left(H_{\mathrm{c}, \text { ord }}^{\operatorname{dim} \mathscr{Y}}\left(K_{\infty, \infty} ; \underline{L}_{\lambda, E / \mathcal{O}}\right), E / \mathcal{O}\right) \\
& =H_{\mathrm{ord}}^{\operatorname{dim} \mathscr{X}-\operatorname{dim} \mathscr{Y}}\left(K_{\infty, \infty} ; \mathcal{O}\right)
\end{aligned}
$$

This is independent of λ. Now $\operatorname{dim} \mathscr{X}-\operatorname{dim} \mathscr{Y}$ is the top degree.
Specialization à la Hida recovers the previously constructed measures $\mu_{\mathcal{O}}^{\lambda_{\mathcal{O}}, j}(\phi)$.
F / \mathbf{Q} : CM or totally real or assume existence of Galois representations for torsion classes for GL $(n+1) \times \mathrm{GL}(n)$
\mathfrak{m} : non-Eisenstein maximal ideal in Hida's universal nearly ordinary Hecke algebra $\mathbf{h}_{\text {ord }}\left(K_{\infty, \infty} ; \mathcal{O}\right)$, i.e. the residual Galois representation is of the form

$$
\bar{\rho}_{\mathfrak{m}}=\bar{\rho}_{n+1} \otimes \bar{\rho}_{n}
$$

with absolutely irreducible $\bar{\rho}_{n+1}$ and $\bar{\rho}_{n}$ of dimensions $n+1$ and n.
Conjecturally,

$$
H_{\text {ord }}^{\operatorname{dim} \mathscr{X}-\operatorname{dim} \mathscr{Y}}\left(K_{\infty, \infty} ; \underline{L}_{\lambda^{v}, \mathcal{O}}\right)_{\mathfrak{m}} \cong \mathbf{h}_{\text {ord }}\left(K_{\infty, \infty} ; \mathcal{O}\right)_{\mathfrak{m}}
$$

and $L_{p, \mathfrak{m}}^{\text {univ }} \in \mathbf{h}_{\text {ord }}\left(K_{\infty, \infty} ; \mathcal{O}\right)_{\mathfrak{m}}$.

Table of Contents

```
Cohomological construction of p-adic distributions
    Cohomological setup
    The modular symbol
    The distribution relation
    The p-adic measure
    Functional equation
    Manin congruences
    Independence of weight
Non-abelian measures
```

Remarks about GL(2n)
Setup
The modular symbol
Properties

Setup

F/Q a totally real number field

$$
\begin{aligned}
G & =G_{2 n}=\operatorname{res}_{F / \mathbf{Q}} \operatorname{GL}(2 n) \\
H & =G_{n} \times G_{n}=\operatorname{res}_{F / Q} \mathrm{GL}(n) \times \operatorname{GL}(n) \\
\Delta & : H \rightarrow G, g \mapsto \operatorname{diag}(g, g) \\
S & \subseteq G \text { maximal } \mathbf{Q} \text {-split torus in the center (rank 1) } \\
K_{\infty} & \subseteq G(\mathbf{R}) \text { max'I compact } \\
\widetilde{K}_{\infty} & =S(\mathbf{R})^{0} K_{\infty} \subseteq G(\mathbf{R}) \\
L_{\infty} & =\widetilde{K}_{\infty} \cap H(\mathbf{R})=S(\mathbf{R})^{0} \cdot[\text { max'I compact }] \\
K & \subseteq G\left(\mathbf{A}^{(\infty)}\right) \text { compact open } \\
L & \subseteq H\left(\mathbf{A}^{(\infty)}\right) \text { compact open } \\
\mathscr{X}(K) & =G(\mathbf{Q}) \backslash G(\mathbf{A}) / \widetilde{K}_{\infty} K \\
\mathscr{Y}(L) & =H(\mathbf{Q}) \backslash H(\mathbf{A}) / L_{\infty} L \\
i & : \mathscr{Y}(L) \rightarrow \mathscr{X}(K) \text { proper, whenever } L \subseteq K
\end{aligned}
$$

Setup

p a rational prime, E / \mathbf{Q}_{p} finite, $\mathcal{O} \subseteq E$ its valuation ring

$$
\begin{aligned}
B & =T U \text { upper Borel in } G \\
\mathfrak{u} & : \mathcal{O} \text {-Lie algebra of } U \\
\lambda & : B \text {-dominant } E \text {-rational weight of } G \\
P & =H N \text { upper maximal }(n, n) \text {-parabolic in } G \\
t_{p} & =\operatorname{diag}\left(p \cdot \mathbf{1}_{n}, \mathbf{1}_{n}\right) \in G L_{2 n}\left(F_{p}\right)=G\left(\mathbf{Q}_{p}\right) \\
I_{\alpha^{\prime}, \alpha} & =\left\{k \in G\left(\mathbf{Z}_{p}\right) \mid k \in B\left(\mathbf{Z}_{p} / p^{\alpha}\right) \text { and } k \in U\left(\mathbf{Z}_{p} / p^{\alpha^{\prime}}\right)\right\} \\
U_{p} & =I_{\alpha^{\prime}, \alpha} \Delta\left(t_{p}\right) I_{\alpha^{\prime}, \alpha}=\quad \bigsqcup_{u \in N\left(\mathbf{Z}_{p}\right) / t_{p} N\left(\mathbf{Z}_{p}\right) t_{p}^{-1}} u t_{p} I_{\alpha^{\prime}, \alpha} \\
& =\prod_{\mathfrak{p} \mid p} U_{\mathfrak{p}}^{v_{\mathfrak{p}}(p)} \\
V_{\alpha^{\prime}, \alpha} & =K^{(p)} \times I_{\alpha^{\prime}, \alpha} \\
h & =\left(\begin{array}{ll}
\mathbf{1}_{n} & w_{n} \\
\mathbf{0}_{n} & w_{n}
\end{array}\right)
\end{aligned}
$$

The modular symbol

Put again $g_{\beta}=h t_{\rho}^{\beta}$ and observe

$$
H\left(\mathbf{Q}_{p}\right) \cap g_{\beta} l_{0, \alpha} g_{\beta}^{-1}=\left\{\operatorname{diag}\left(h_{1}, h_{2}\right) \mid h_{1} h_{2}^{-1} \in \mathbf{1}_{n}+M_{n}\left(\mathcal{O}_{p}\right)\right\}
$$

Define $C\left(p^{\beta}\right)$ appropriately and define the modular symbol as before:

$$
\begin{gathered}
\mathscr{P}_{A, x, \beta}^{\lambda, j}: \quad H_{\mathrm{c}, \mathrm{ord}}^{\mathrm{dim} \mathscr{Y}}\left(\mathscr{X}\left(K_{\alpha^{\prime}, \alpha}\right) ; \underline{L_{\lambda, A}}\right) \rightarrow A_{(j)}, \\
\phi \mapsto \int_{\mathscr{Y}\left(L_{\beta}\right)[x]} \eta_{j, A} \circ i^{*}\left[\left(-\lambda^{w_{0}}\right)\left(t_{p}^{\beta}\right) \cdot t_{g_{\beta}}^{\lambda}\right]\left(U_{p}^{-\beta} \bullet \phi\right) .
\end{gathered}
$$

Likewise, define finite measures:

$$
\mu_{A, \beta}^{\lambda, j}(\phi):=\sum_{x \in C\left(p^{\beta}\right)} \mathscr{P}_{A, x, \beta}^{\lambda, j}(\phi) \cdot x \in A_{(j)}\left[C\left(p^{\beta}\right)\right]
$$

Properties

(jt. with M. Dimitrov and A. Raghuram)

Put

$$
\mu_{\mathcal{O}}^{\lambda, j}(\phi):=\underset{\lim _{\beta}}{\left.\left.\lim _{\mathcal{O}, \beta}^{\lambda, j}(\phi) \in \mathcal{O}\left[\left[\boldsymbol{C}\left(p^{\infty}\right)\right]\right] .\right] .\right]}
$$

- So far have to assume $\alpha^{\prime}=0$.
- This is a bounded measure in the ordinary case.
- Satisfies Manin's congruences.
- Independent of weight as well.
- Have an interpolation formula for cuspidal automorphic regular algebraic Π of $\mathrm{GL}_{2 n}\left(\mathbf{A}_{F}\right)$ admitting a Shalika model, i.e. transfers from globally generic cuspidal representations of GSpin ${ }_{2 n+1}\left(\mathbf{A}_{F}\right)$, which are U_{p}-ordinary, P-regular and spherical at p.

To be continued.

Thank you for your attention.

