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Today’s talk is a report on two of our papers:

On special Bessel periods and the Gross-Prasad conjecture for
SO (2n + 1)× SO (2). Math. Ann. 368 (2017), 561–586.

Refined global Gross-Prasad conjecture on special Bessel periods and
Böcherer’s conjecture. arXiv:1611.05567v4 (November 27, 2017), to
be revised.
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Notation

F : a number field.

E : a quadratic extension of F .

χE : quadratic character of A×/F× corresponding to E .

All global L-functions are complete L-functions.

ξF =
∏

v : all ζFv (s): complete Dedekind zeta of F .

(V , ⟨ , ⟩): a quadratic space such that dimV = 2n + 1 (n ≥ 2),

V = Hn−1 ⊕ L (orthogonal sum) with H: hyperbolic plane

and
dim L = 3, L ⊃

(
E ,NE/F

)
as quadratic spaces.

Gn := F -isomorphism classes of SO (V ) for such V .

We identify SO (V ) with its F -isomorphism class in Gn.

We specify G = Gn = SO (Vn) ∈ Gn to denote the split one.
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Bessel subgroup

For G = SO (V ) ∈ Gn, we have SO (E ) ⊂ G .
But SO (E ) is “too small.”

Definition (Bessel subgroup)

Taking a certain unipotent subgroup S, a Bessel subgroup RE is defined by

RE := DE ⋉ S with DE := SO (E ),

which is contained in a maximal parabolic subgroup of G whose Levi
component is GL (n − 1)× SO (L).

For a non-trivial character ψ : A/F → C×, we have a character on S (A)
also denoted by ψ, by abuse of notation, which is stable under the
conjugate action of DE (A).
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Bessel period & Special Bessel period

Definition (Bessel period)

Let τ be a character of DE (A) /DE (F ). Note: DE ≃ E×/F×.
Then for an automorphic form f on SO (V ,A), BE ,τ,ψ (f ), a Bessel period
of type (E , τ, ψ) is defined by

BE ,τ,ψ (f ) :=

∫
DE (F )\DE (A)

∫
S(F )\S(A)

f (ts) τ−1 (t) ψ−1 (s) dt ds.

Definition (Special Bessel period)

When τ is trivial, the Bessel period of type (E , 1, ψ) is called the special
Bessel period of type E and denoted by BE (f ), i.e.

BE (f ) :=

∫
DE (F )\DE (A)

∫
S(F )\S(A)

f (ts) ψ−1 (s) dt ds.
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Gross-Prasad conjecture for special Bessel periods

Theorem 1 (F & Morimoto, Math. Ann.)

π = ⊗v πv : an irreducible cuspidal automorphic representation of
G (A) for G ∈ Gn. Let Vπ be its space of automorphic forms.

Assume that a local component πw at some finite place w is generic.

Suppose that BE ̸≡ 0 on Vπ. Then L (1/2, π) L (1/2, π × χE ) ̸= 0.
Moreover:

∃π◦: globally generic irreducible cuspidal automorphic representation
of G (A) which is nearly equivalent to π, i.e. π◦v ≃ πv for almost all v .

Ginzburg, Jiang & Rallis: more general theorem assuming the global
genericity of π.
Jiang & Zhang: recently proved a more general theorem assuming the
extension of Arthur’s result to the non quasi-split case.
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Theorem 1 follows from the following theorem.

Theorem 2 (F & Morimoto, Math. Ann.)

π: an irreducible cuspidal automorphic representation of G (A) with
G ∈ Gn. Suppose that BE ̸≡ 0 on Vπ.

Suppose moreover that:

σ := Θn (π, ψ): theta lift of π from G to S̃pn (A) with respect to ψ,

Π := ΘVn

(
σ, ψ−λ): theta lift of σ to Gn (A) with respect to ψ−λ

are both non-zero and cuspidal. Note E = F
(√

−λ
)
and ψa (x) = ψ (ax).

Then we have:
L (1/2, π) L (1/2, π × χE ) ̸= 0

and ∃π◦: globally generic irreducible cuspidal automorphic representation
of Gn (A) nearly equivalent to π.

Remark

This line of thought concerning special Bessel periods goes back to
Waldspurger (n = 1) and Piatetski-Shapiro & Soudry (n = 2).

Furusawa, Masaaki (OCU) Special Bessel periods for SO (2n + 1) CMO 2018 8 / 23



Proof of Theorem 2

Remark (Continued)

Theorem 2 seems to have been known to experts for a long time.

Now it is possible to give a rigorous proof thanks to essential
contributions made towards theta correspondence over the years.

Among them, the most notable ones are Adams & Barbasch (arch.),
Gan & Savin (non-arch.), Gan & Takeda (Howe duality), Jiang &

Soudry (SO2n+1 ↔ S̃pn), Yamana (L-functions, L-values and theta).

Proof of Theorem 2

Recall that (n = 2 by Piatetski-Shapiro & Soudry, n ≥ 2 by F.):

BE ̸≡ 0 on Vπ ⇐⇒ σ = Θn (π, ψ), theta lift to S̃pn (A), is ψλ-generic.

σ is ψλ-generic ⇐⇒ Π = ΘVn

(
σ, ψ−λ

)
, theta lift to Gn (A), is generic.
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Proof of Theorem 2 (continued)

Here the generic character ψλ for S̃pn (A) is defined by

ψλ

[(
u

tu−1

)(
1n S

1n

)]
= ψ

(
u1,2 + · · ·+ un−1,n +

λ

2
sn,n

)
.

Then:

1 Generic representation Π ⊗ χE of G (A) is nearly equivalent to π.

2 We have σ = Θn

(
Π,ψλ

)
by Jiang & Soudry.

3 Since Θn (π, ψ) and Θn

(
Π,ψλ

)
are both non-zero and cuspidal, we

have L (1/2, π) ̸= 0 and L (1/2,Π) ̸= 0 by Yamana.

4 Finally we may show that L (s,Πv ) = L (s, πv × χv ) for any place v
using Adams & Barbasch for archimedean and Gan & Savin for
non-archimedean.

Q.E.D. of Theorem 2
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Refined Gross-Prasad conjecture

Ichino & Ikeda: formulated a conjectural explicit central L-value
formula by refining the Gross-Prasad conjecture in the co-dimension
one case.
Liu: succeeded in formulating the conjectural explicit central L-value
formula in the arbitrary co-dimension case.

Set Up

π: an irreducible tempered cuspidal automorphic representation of
G (A) with G ∈ Gn.

All global measures are Tamagawa measures.

⟨ϕ1, ϕ2⟩ :=
∫
G(F )\G(A)

ϕ1 (g) ϕ2 (g) dg, Petersson product on Vπ.

⟨ , ⟩v : Gv -invariant Hermitian inner product on Vπv such that

⟨ϕ1, ϕ2⟩ =
∏
v

⟨ϕ1,v , ϕ2,v ⟩v for ϕi = ⊗v ϕi ,v ∈ Vπ.
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Set Up (continued)

dgv : measure on Gv such that Vol (Kv , dgv ) = 1 for almost all v .

dtv : similarly taken measure on DE ,v := SO (E )v .

Haar measure constants: dg = CG ·
∏

v dgv , dt = CE ·
∏

v dtv .

Local integral αv (ϕv , ϕ
′
v ):

αv

(
ϕv , ϕ

′
v

)
:=

∫
DE ,v

∫ st

Sv

⟨
πv (sv tv )ϕv , ϕ

′
v

⟩
v
ψ−1
v (s) dtv dsv .

Here

∫ st

Sv

denotes the stable integration on Sv defined by Liu.

Liu showed that when v is “good,” we have

αv

(
ϕv , ϕ

′
v

)
=

L
(
1
2 , πv

)
L
(
1
2 , πv × χE ,v

)∏n
j=1 ζFv (2j)

L (1, πv ,Ad) L (1, χE ,v )
.
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Theorem 3 (F & Morimoto, arXiv)

F : totally real number field.

π = ⊗v πv : irreducible cuspidal tempered automorphic representation
of G (A) for G ∈ Gn.

At any archimedean place v, πv is a discrete series representation.

Suppose that BE ̸≡ 0 on Vπ.
Then:

For any v, ∃ϕ′v ∈ Vπv : KG ,v -finite vector such that αv (ϕ
′
v , ϕ

′
v ) ̸= 0.

For any non-zero ϕ ∈ Vπ of the form ϕ = ⊗v ϕv , we have

|BE (ϕ)|2

⟨ϕ, ϕ⟩
= 2−ℓCE

×
L
(
1
2 , π

)
L
(
1
2 , π × χE

)∏n
j=1 ξF (2j)

L (1, π,Ad) L (1, χE )
·
∏
v

α♮v (ϕv , ϕv )

⟨ϕv , ϕv ⟩
.

(Recall that all L-functions are complete L-functions.)
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(Theorem 3 continued) Here

α♮v (ϕv , ϕv ) :=
L (1, πv ,Ad) L (1, χE ,v )

L (1/2, πv ) L (1/2, πv × χE ,v )
∏n

j=1 ζFv (2j)
· αv (ϕv , ϕv )

and hence α♮
v (ϕv ,ϕv )
⟨ϕv ,ϕv ⟩v

= 1 for almost all v .

π has a weak lift Π to GL2n (A), i.e. Π = ⊗v Πv is an irreducible
automorphic representation of GL2n (A) such that Πv is a local
Langlands lift of πv at all archimedean and almost all
non-archimedean v. Then Π is of the form Π = ⊞ℓ

i=1πi (isobaric
sum) such that

πi : irreducible cuspidal automorphic representation of GL2ni (A) such
that L

(
s, πi ,∧2

)
has a pole at s = 1,

∑k
i=1 ni = n, πi ̸≃ πj (i ̸= j).

(Indeed the existence of such Π readily follows from Theorem 1.)

When n = 2, Theorem 3 has been proved by Liu for endoscopic Yoshida
lifts and by Corbett for non-endoscopic Yoshida lifts.
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Skeleton of the proof of Theorem 3: (A =
a.a.

B implies that A = B up to

multiplication by a product of finitely many local factors.)

1 Global pull-back formula of Bessel periods by F.:

W (ϕ̃;ψλ) =
a.a.

CGC
−1
E · BE (ϕ) where ϕ̃ := θφψ (ϕ).

2 Explicit formula for metaplectic Whittaker periods by Lapid-Mao:

|W (ϕ̃;ψλ)|2

< ϕ̃, ϕ̃ >
=
a.a.

2−ℓ ·
L(1/2, π × χE )

∏n
j=1 ξF (2j)

L(1, π,Ad)
.

3 Precise Rallis inner product formula by Gan-Takeda:

< ϕ̃, ϕ̃ >

< ϕ, ϕ >
=
a.a.

CG · L(1/2, π)∏n
j=1 ξF (2j)

.

=⇒ We are reduced to proving a pull-back formula for the local
metaplectic Whittaker pairing.
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Böcherer’s conjecture

Recall: G2 = SO (3, 2) ≃ PGSp(2).

k1 ≥ k2 ≥ 3, k1 ≡ k2 (mod 2).

ϱ := Symk1−k2 ⊗ detk2 and Vϱ its space.

A holomorphic function f : H2 → Vϱ is a Siegel cusp form of degree 2
of weight ρ with respect to Sp2 (Z) when

f (γ ⟨Z ⟩) = ϱ (CZ + D) f (Z ) for Z ∈ H2, γ =

(
A B
C D

)
∈ Sp2 (Z)

and it has the Fourier expansion:

f (Z ) =
∑
T>0

a (T , f ) exp
[
2π

√
−1Tr (TZ )

]
, a (T , f ) ∈ Vϱ

where T =

(
a b/2

b/2 c

)
, a, b, c ∈ Z and T is positive definite.
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Böcherer’s conjecture

E : imaginary quadratic field, DE : discriminant of E ,
hE : class number of E .

−dE : square free integer such that E = Q
(√

−dE
)
.

SE :=

(
1 Re(δ)

Re(δ) δδ̄

)
where δ =

{√
−dE if −dE ̸≡ 1 (mod 4);

1+
√
−dE
2 if −dE ≡ 1 (mod 4).

TE :=
{
g ∈ GL2 | det(g)−1 · tg SE g = SE

}
. Note: TE ≃ E×.

{ti}1≤i≤hE
: representatives of

TE (Q) \TE (A) /TE (R)
∏
p<∞

(TE (Qp) ∩GL2 (Zp))

such that ti ∈
∏

p<∞ TE (Qp) and let us write ti = γimiki where

γi ∈ GL2 (Q), mi ∈ GL+
2 (R), ki ∈ GL2 (Zp).

Si := det (γi )
−1 · tγiSEγi for 1 ≤ i ≤ hE .
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Definition (Special Bessel model in the Siegel modular setting)

For a Siegel cusp form Φ of degree 2 of weight ϱ with respect to Sp2 (Z)
which is a Hecke eigenform, let wE be the number of roots of 1 in E and

B (Φ;E ) :=
1

wE

hE∑
i=1

ϱ (γi ) [a (Si , Φ)] .

Theorem 4 (F & Morimoto, Math. Ann.)

Let Φ be a Siegel cusp form of degree 2 with respect to Sp2 (Z) of weight
ρ, which is a Hecke eigenform.
Then

B (Φ;E ) ̸= 0 ⇐⇒ L

(
1

2
, π (Φ)

)
· L

(
1

2
, π (Φ)× χE

)
̸= 0

where π (Φ) is the cuspidal representation of PGSp2 (A) attached to Φ.
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Böcherer’s conjecture

Conjecture (Böcherer (circa 1986, before Gross-Prasad))

Suppose that k1 = k2 = k, i.e. Φ is scalar valued.
Then there exists a constant CΦ which depends only on Φ such that, for
any imaginary quadratic field E ,
we have

L (1/2, π (Φ)× χE ) = CΦ · |DE |−k+1 · |B (Φ;E )|2 .

Remark

Böcherer did not speculate the nature of the constant CΦ.

Böcherer verified the conjecture for Saito-Kurokawa lifts.

Explicit formulas of B (Φ;E ) for Yoshida lifts have been obtained by
Böcherer & Schulze-Pillot, Böcherer, Dummigan & Schulze-Pillot and
Hsieh & Namikawa.
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Explicit refinement of Böcherer’s conjecture

Dickson, Pitale, Saha & Schmidt (arXiv:1512.07204) showed that Refined
Gross-Prasad conjecture for Bessel periods on SO (5) implies Böcherer’s
conjecture with the constant CΦ explicitly determined.
Thus:

Our Theorem 3, together with Dickson et al., yields the explicit refinement
of Böcherer’s conjecture.

Theorem 5 (F & Morimoto, arXiv)

Suppose that k1 = k2 = k, i.e. Φ is scalar valued. Let Φ be a Siegel cusp
form of degree 2 of weight k with respect to Sp2 (Z), which is a Hecke
eigenform. Suppose that Φ is not a Saito-Kurokawa lift.
Then we have

|B (Φ;E )|2

⟨Φ,Φ⟩
= |DE |k−1 · 22k−5 ·

L
(
1
2 , π (Φ)

)
L
(
1
2 , π (Φ)× χE

)
L (1, π (Φ) ,Ad)

.
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More generally:

N: odd square free integer such that
(
DE
p

)
= −1 for ∀p|N.

Φ: Siegel cusp form of degree 2 of weight k with respect to Γ
(2)
0 (N)

which is a Hecke eigenform but not a Saito-Kurokawa lift.

Then:

|B (Φ;E )|2

⟨Φ,Φ⟩
= |DE |k−1 ·22k−5−c ·

∏
p|N

Jp ·
L (1/2, π (Φ)) L (1/2, π (Φ)× χE )

L (1, π (Φ) ,Ad)
.

Here c = 1 or 0 depending on whether Φ is a Yoshida lift or not, and

Jp =


(
1 + p−2

) (
1 + p−1

)
if π (Φ)p is of type IIIa;

2
(
1 + p−2

) (
1 + p−1

)
if π (Φ)p is of type VIb;

0 otherwise.
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Remark

“type” refers to the representation types in Roberts & Schimidt.

Work in progress: extensions to


non-special Bessel model case;

when Φ is vector valued;

when k = 2.

We mention one of the immediate consequences of Theorem 5.

Theorem 6 (Algebraicity of central values of spinor L-functions)

Φ: Siegel cusp form of degree 2 of weight k with respect to Sp2 (Z),
which is a Hecke eigenform but not a Saito-Kurokawa lift.

We may normalize Φ so that all Fourier coefficients a (T , Φ) of Φ are
in Z̄, the set of algebraic integers.

Then for any imginary quadratic field E ,

w (E )2 · Dk−1
E · 22k−5 ·

L
(
1
2 , π (Φ)

)
L
(
1
2 , π (Φ)× χE

)
L (1, π (Φ) ,Ad)

· ⟨Φ,Φ⟩ ∈ Z̄.
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Remark

According to a conjecture concerning Whittaker periods, by Ichino in the
GSp2 case and by Lapid & Mao in more general cases,

L (1, π (Φ) ,Ad)

above may be essentially replaced by

⟨Φgen, Φgen⟩

where Φgen is an automorphic form in the space of the generic
representation in the same L-packet as π (Φ).
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