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Partition function and density of states

e Given a measure 1 on 2 C R?, the partition function is the normalization factor

z= [ du(a)
Q
e Setting U = — log(du/duo) the density of state D(z) is
dV
D(u) = — where V(u) = / duo(x) sothat Z = /e_“D(u)du
du U(z)<u R
> Statistical mechanics: If du(x) = e V) dx for some U : Q — [0, o0), D(E) gives Z(f3) at any f5

Z(B) = fR e P*D(2)dz

28) = [ exp(—pU(@)dz,  D(E) = /Q S(E — U(x))da

> Bayesian inference: If L(y|x, M) is the likelihood of the data y given the parameters « and the
model M, and duo(x) is the (normalized) prior, du(x) = L(y|x, M )duo(x) is the posterior and

Z(y, M) = /L(y|a:,M)d,uo(a:) is the evidence
Q

e Methods to estimate Z and D () include thermodynamic integration, Wang-Landau, simulated / parallel
tempering, nested sampling, etc. — note that V' (u) = Po(U (x) < w) is an observable, but Z is not.

e Typically hard to compute in high dimension because of (i) multimodality of x and (ii) entropic effects.



Importance sampling along trajectories

e EXpectations via reweighing: Given an observable ¢ : €2 — R, and two measures o and p1 such
that po << 1

po(@) = /cbduo /qﬁd—mdul = p1(pdpo/dp1)

e Expectations along trajectories (with a flavor of PDMP): Given b : Q2 — R? let
dX (t,x)/dt = b(X(t,x)), X(O0,x) =x e
7_(x) =sup{t <0: X(t,x) € 02}, 7+ (x) =inf{t > 0: X(t,x) € 00}

Given po, define g via
@) =7 [ ( /::)MX(t,m))dt) dpo(@), 7= [ (@) ~ 7-@)dpo(@)

change of variable

e Combining the two: We can write an expression for p1 and use it to derive + invertibility of the flow map

ST $(X (&) (¢, @)po(X (¢, @))dt

ote) = /Q JES (@) po(X (¢, @))dt

where po = duo/dx and transport points drawn from uo
t towards regions that dominate uo(¢)?
J(t.z) = exp / divb(X (s, z))ds
0

dpo(x)



MO(¢) — / fTTjL(EcJ;) ¢(X(t’m))J(t,w)po(X(t,:c))dt

o [T I @)po(X (¢, @))dt

dpo(x)

Back to the density of states

e Extending the state-space: Given du(q) = e V(@dgq, let
dg/dt =p, dp/dt=-VU(qg)—~vp (v>0)

e Then Z = (27)%/2Z, with

Zy= /Q eV Wdq and Z = e #4P)agdp with H(q,p) = i|p|*+ U(q)

QxR

e Using divb = d~, if in the previous formula we set

dpo(g,p) = V; '1(H(q,p) < Eo)dgdp, and ¢(q,p) =1(H(q,p) < E) (E < Eo)
we deduce

V(E) = /

dqdp = / e~ (me(a:p)=10(a:2)) ggdp
H(q,p)<E H(q,p)<Eo

where

te(q,p) = inf{|t| : H(q(t),p(t)) = E}, 710(q,p) =inf{t <0: H(q(t),p(t)) = Eo}

e Thatis, V(E)/V; is the expectation of e=@(72(a:P)=7(a:P)) gver initial data uniform in H(q, p) < Fo.



Variance of the estimator

e If we rescale time as vt — t and let v — 0O, the damped Hamiltonian dynamics reduces to descent on
the Reeb (aka disconnectivity) graph of H(q, p) (which is that of U (q)), that is:

> On each branch of the graph E(t) = H(q(t), p(t)) satisfies a closed equation depending on the
geometry of the underlying basin;

> At every branching point, the trajectory picks a branch at random with a probability that also depends
only on the geometry of the basins.
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From Freidlin & Wentzell,
Annals of Prob, 21, 2015 (1993)




Variance of the estimator

If we rescale time as vt — t and let v — 0O, the damped Hamiltonian dynamics reduces to descent on
the Reeb (aka disconnectivity) graph of H(q, p) (which is that of U (q)), that is:

> On each branch of the graph E(t) = H(q(t), p(t)) satisfies a closed equation depending on the
geometry of the underlying basin;

> At every branching point, the trajectory picks a branch at random with a probability that also depends
only on the geometry of the basins.

Indexing for j = 1,..., M all the branches of the graph, let 7;(E£) > O (possibly infinite) be the
(deterministic) time it takes the trajectory to go from H(q(0),p(0)) = Epto H(q(t),p(t)) = E.

Denote by p; > O with Z;W:l p; = 1 the probability (computed over initial data uniformly drawn over
H(q,p) < Ej) that the trajectory takes branch j.

Then 75(q,p) — 170(q, p) = 7;(E) with probability p; (i.e. depending only on whether the trajectory
initiated at (g, p) travels on branch 7).

M M
mean = V(E)/Vp = ije”d”(m, var = ije_QVde(E) — mean?.
J=1 J=1

Note that the estimator is consistent and unbiased at every y



M
var = » " pje~ 2195 — mean?
=1

Quartic well example

e |f there is only one well (1.0 iIs monomodal), the variance is zero! A single trajectory does the job if v is
small enough

Results with a single trajectory for
d
U(g) => (bj-q)*

j=1

with some random b, € R?. Here
V(E)/Vo = (E/Eo)>/*

and we took v = .1 min; |b;]|.

d

Similar results for U(q) = » (b, - ¢)°.

j=1

e Note that this implies a O(~~1) cost to integrate the equations to the relevant time scale, and how small
~ needs to be depends on the dimension in general.
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Curie-Weiss model -
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e Curie-Weiss model for N continuous spins o; = cos(g;) with potential r
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U(q) = —N"">  cos(g) cos(g;)

i,j=1

In the limit as NV — oo, the model exhibits a second order phase transition at 3 = 2, because entropic
effects that favor disorganized spin configurations dominate at high temperatures, whereas energetic
effects that favor cos(q;) = 41 dominate at low temperatures.
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[V | | e Correspondingly, the density of states
decreases rapidly with the energy, since

| lowering U(q) to its minimum value
110760 E = —N requires to align the spins,
] and the number of aligned configurations
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H | is much less that the number of disorga-
= 1 rso nized ones.
= e This effect can be estimated analytically
j 110200 Vvia LDT by estimating the entropy of the
08 : : magnetization
1 | w estimator * 10'250
analytical from LDT N
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Result for N = 100 spins with a single trajectory run at v = 103,
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Bayesian inference test-case g

e Mixture of Gaussians model as benchmark for inference problems. The model is defined as a mixture
of n distributions in dimension d with amplitudes A;, means w, and covariances 3;

Though we do not have access to the exact expression for V' (E) at all energy levels in this model, we
can evaluate the partition function Z exactly.
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10 Result with . = 50 wells with depths exponentially distributed
10-6 in dimension d = 10, an example much more complex than
E &5 previous benchmarks. In this regime, brute force Monte Carlo
S 10-10 ~|5 approaches fail dramatically. The volume estimator, with only
= = 100 trajectories, reaches the deepest minima in a nontrivial es-
E/ 10-14 - timation problem. Furthermore, the low energy volume esti-
mates are reasonably accurate: we compute Z = 17.41 ver-
107184 o sus the exact result 7 = 17.10.
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Conclusions

e Estimator using trajectories that are guaranteed to visit regions of low energy / high
likelihood around local minima of that would otherwise be difficult to select by direct
sampling of the prior.

e Approach similar in spirit to Skilling’s nested sampling method, but with the advantage
that it does not require uniform sampling below / above every energy / likelihood level,
which is required in nested sampling and is hard to implement in practice.

e Every trajectory contributes independently to the estimator, meaning that the
implementation is trivially parallelizable.

¢ \ariance can be estimated in the small friction limit, and depends on the complexity of
the Reeb graph of the energy / likelihood.



