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Partition function and density of states

D(E) gives Z(β) at any β
Z(�) =

R
R e��zD(z)dz

• Given a measure µ on ⌦ ⇢ Rd, the partition function is the normalization factor

Z =
Z

⌦
dµ(x)

• Setting U = � log(dµ/dµ0) the density of state D(z) is

D(u) =
dV

du
where V (u) =

Z

U(x)<u
dµ0(x) so that Z =

Z

R
e�uD(u)du

. Statistical mechanics: If dµ(x) = e��U(x)dx for some U : ⌦ ! [0,1),

Z(�) =
Z

⌦
exp(��U(x))dx, D(E) =

Z

⌦
�(E � U(x))dx

. Bayesian inference: If L(y|x,M) is the likelihood of the data y given the parameters x and the
model M , and dµ0(x) is the (normalized) prior, dµ(x) = L(y|x,M)dµ0(x) is the posterior and

Z(y,M) =
Z

⌦
L(y|x,M)dµ0(x) is the evidence

• Methods to estimate Z and D(u) include thermodynamic integration, Wang-Landau, simulated / parallel
tempering, nested sampling, etc. – note that V (u) = P0(U(x) < u) is an observable, but Z is not.

• Typically hard to compute in high dimension because of (i) multimodality of µ and (ii) entropic effects.



Importance sampling along trajectories

change of variable  
+ invertibility of the flow map

• Expectations via reweighing: Given an observable � : ⌦ ! R, and two measures µ0 and µ1 such
that µ0 ⌧ µ1

µ0(�) =
Z

⌦
�dµ0 =

Z

⌦
�
dµ0

dµ1
dµ1 = µ1(�dµ0/dµ1)

• Expectations along trajectories (with a flavor of PDMP): Given b : ⌦ ! Rd let

dX(t,x)/dt = b(X(t,x)), X(0,x) = x 2 ⌦

⌧�(x) = sup{t < 0 : X(t,x) 2 @⌦}, ⌧+(x) = inf{t > 0 : X(t,x) 2 @⌦}
Given µ0, define µ1 via

µ1(�) = ⌧̄�1
Z

⌦

✓Z ⌧+(x)

⌧�(x)
�(X(t,x))dt

◆
dµ0(x), ⌧̄ =

Z

⌦
(⌧+(x)� ⌧�(x))dµ0(x)

• Combining the two: We can write an expression for µ1 and use it to derive

µ0(�) =
Z

⌦

R ⌧+(x)
⌧�(x) �(X(t,x))J(t,x)⇢0(X(t,x))dt

R ⌧+(x)
⌧�(x) J(t,x)⇢0(X(t,x))dt

dµ0(x)

where ⇢0 = dµ0/dx and

J(t,x) = exp

✓Z t

0
div b(X(s,x))ds

◆ transport points drawn from μ0  
towards regions that dominate μ0(φ)?  



Back to the density of states

• Extending the state-space: Given dµ(q) = e
�U(q)

dq, let

dq/dt = p, dp/dt = �rU(q)� �p (� > 0)

• Then Z = (2⇡)d/2Zq with

Zq =
Z

⌦
e
�U(q)

dq and Z =
Z

⌦⇥Rd

e
�H(q,p)

dqdp with H(q,p) = 1
2|p|

2 + U(q)

• Using div b = d�, if in the previous formula we set

dµ0(q,p) = V
�1
0 1(H(q,p) < E0)dqdp, and �(q,p) = 1(H(q,p) < E) (E  E0)

we deduce

V (E) =
Z

H(q,p)<E

dqdp =
Z

H(q,p)<E0

e
�d�(⌧E(q,p)�⌧0(q,p))dqdp

where

⌧E(q,p) = inf{|t| : H(q(t),p(t)) = E}, ⌧0(q,p) = inf{t < 0 : H(q(t),p(t)) = E0}

• That is, V (E)/V0 is the expectation of e�d�(⌧E(q,p)�⌧0(q,p)) over initial data uniform in H(q,p) < E0.

• Expectations via reweighing: Given an observable � : ⌦ ! R, and two measures µ0 and µ1 such
that µ0 ⌧ µ1

µ0(�) =
Z

⌦
�dµ0 =

Z

⌦
�
dµ0

dµ1
dµ1 = µ1(�dµ0/dµ1)

• Expectations along trajectories (with a flavor of PDMP): Given b : ⌦ ! Rd let

dX(t,x)/dt = b(X(t,x)), X(0,x) = x 2 ⌦

⌧�(x) = sup{t < 0 : X(t,x) 2 @⌦}, ⌧+(x) = inf{t > 0 : X(t,x) 2 @⌦}
Given µ0, define µ1 via

µ1(�) = ⌧̄�1
Z

⌦

✓Z ⌧+(x)

⌧�(x)
�(X(t,x))dt

◆
dµ0(x), ⌧̄ =

Z

⌦
(⌧+(x)� ⌧�(x))dµ0(x)

• Combining the two: We can write an expression for µ1 and use it to derive

µ0(�) =
Z

⌦

R ⌧+(x)
⌧�(x) �(X(t,x))J(t,x)⇢0(X(t,x))dt

R ⌧+(x)
⌧�(x) J(t,x)⇢0(X(t,x))dt

dµ0(x)

where ⇢0 = dµ0/dx and

J(t,x) = exp

✓Z t

0
div b(X(s,x))ds

◆



Variance of the estimator
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From Freidlin & Wentzell,  
Annals of Prob, 21, 2015 (1993)

• If we rescale time as �t ! t and let � ! 0, the damped Hamiltonian dynamics reduces to descent on
the Reeb (aka disconnectivity) graph of H(q,p) (which is that of U(q)), that is:

. On each branch of the graph E(t) = H(q(t),p(t)) satisfies a closed equation depending on the
geometry of the underlying basin;

. At every branching point, the trajectory picks a branch at random with a probability that also depends
only on the geometry of the basins.

• Indexing for j = 1, . . . ,M all the branches of the graph, let ⌧j(E) > 0 (possibly infinite) be the
(deterministic) time it takes the trajectory to go from H(q(0),p(0)) = E0 to H(q(t),p(t)) = E.

• Denote by pj > 0 with
PM

j=1 pj = 1 the probability (computed over initial data uniformly drawn over
H(q,p) < E0) that the trajectory takes branch j.

• Then ⌧E(q,p) � ⌧0(q,p) = ⌧j(E) with probability pj (i.e. depending only on whether the trajectory
initiated at (q,p) travels on branch j).

mean = V (E)/V0 =
MX

j=1

pje
��d⌧j(E), var =

MX

j=1

pje
�2�d⌧j(E) � mean2.



Variance of the estimator

Νote that the estimator is consistent and unbiased at every γ

• If we rescale time as �t ! t and let � ! 0, the damped Hamiltonian dynamics reduces to descent on
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only on the geometry of the basins.

• Indexing for j = 1, . . . ,M all the branches of the graph, let ⌧j(E) > 0 (possibly infinite) be the
(deterministic) time it takes the trajectory to go from H(q(0),p(0)) = E0 to H(q(t),p(t)) = E.

• Denote by pj > 0 with
PM

j=1 pj = 1 the probability (computed over initial data uniformly drawn over
H(q,p) < E0) that the trajectory takes branch j.

• Then ⌧E(q,p) � ⌧0(q,p) = ⌧j(E) with probability pj (i.e. depending only on whether the trajectory
initiated at (q,p) travels on branch j).

mean = V (E)/V0 =
MX

j=1

pje
��d⌧j(E), var =

MX

j=1

pje
�2�d⌧j(E) � mean2.



Quartic well example

• If we rescale time as �t ! t and let � ! 0, the damped Hamiltonian dynamics reduces to descent on
the Reeb (aka disconnectivity) graph of H(q,p) (which is that of U(q)), that is:

. On each branch of the graph E(t) = H(q(t),p(t)) satisfies a closed equation depending on the
geometry of the underlying basin;

. At every branching point, the trajectory picks a branch at random with a probability that also depends
only on the geometry of the basins.

• Indexing for j = 1, . . . ,M all the branches of the graph, we can define ⌧j(E) > 0 (possibly in-
finite) as the (deterministic) time it takes the trajectory to descent from H(q(0),p(0)) = E0 to
H(q(t),p(t)) = E.

Then ⌧E(q,p)� ⌧0(q,p) = ⌧j(E) depending only on whether the trajectory initiated at (q,p) travels
on branch j.

• If we denote by pj > 0 with
PM

j=1 pj = 1 the probability (computed over initial data uniformly drawn
over H(q,p) < E0) that the trajectory takes branch j,

mean = V (E)/V0 =
MX

j=1

pje
��d⌧j(E), var =

MX

j=1

pje
�2�d⌧j(E) � mean2.
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• If there is only one well (µ0 is monomodal), the variance is zero! A single trajectory does the job if � is
small enough

• Note that this implies a O(��1) cost to integrate the equations to the relevant time scale, and how small
� needs to be depends on the dimension in general.

Results with a single trajectory for

U(q) =
dX

j=1

(bj · q)4

with some random bj 2 Rd. Here

V (E)/V0 = (E/E0)3d/4

and we took � = .1minj |bj|.

Similar results for U(q) =
dX

j=1

(bj · q)2.
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1 Spins

• Curie-Weiss model for N continuous spins �i = cos(qi) with potential

U(q) = �N�1
NX

i,j=1

cos(qi) cos(qj)

In the limit as N ! 1, the model exhibits a second order phase transition at � = 2, because entropic
effects that favor disorganized spin configurations dominate at high temperatures, whereas energetic
effects that favor cos(qj) = ±1 dominate at low temperatures.

• Correspondingly, the density of states is
much lower at low energy, since lowering
U(q) to its minimum value E = �N re-
quires to align the spins, and the number
of aligned configurations is much less
that the number of disorganized ones.

• This effect can be estimated analytically
via LDT by estimating the entropy of the
magnetization

m = N�1
NX

i=1

cos(qi).

Result for N = 100 spin with a single trajectory run at � = 10�3.
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Bayesian inference test-case

• Bayesian example: a mixture of Gaussians model, a benchmark which has been used to character-
ize nested sampling for inference problems. The model is defined as a mixture of n distributions in
dimension d with amplitudes Ai, means µi and covariances ⌃i

L(x) =
nX

i=1

Ai exp
�
1
2(✓ � µi)

T⌃�1
i (✓ � µi)

�
.

Though we do not have access to the exact expression for V (E) at all energy levels in this model, we
can evaluate the partition function Z exactly.

Result with n = 50 wells with depths exponentially distributed
in dimension d = 10, an example much more complex than
previous benchmarks. In this regime, brute force Monte Carlo
approaches fail dramatically. The volume estimator, with only
100 trajectories, reaches the deepest minima in a nontrivial es-
timation problem. Furthermore, the low energy volume esti-
mates are reasonably accurate: we compute Z = 17.41 ver-
sus the exact result Z = 17.10.
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• Mixture of Gaussians model as benchmark for inference problems. The model is defined as a mixture
of n distributions in dimension d with amplitudes Ai, means µi and covariances ⌃i

L(x) =
nX

i=1

Ai exp
�
�1

2(x� µi)
T⌃�1

i (x� µi)
�
.

Though we do not have access to the exact expression for V (E) at all energy levels in this model, we
can evaluate the partition function Z exactly.

Result with n = 50 wells with depths exponentially distributed
in dimension d = 10, an example much more complex than
previous benchmarks. In this regime, brute force Monte Carlo
approaches fail dramatically. The volume estimator, with only
100 trajectories, reaches the deepest minima in a nontrivial es-
timation problem. Furthermore, the low energy volume esti-
mates are reasonably accurate: we compute Z = 17.41 ver-
sus the exact result Z = 17.10.



• Estimator using trajectories that are guaranteed to visit regions of low energy / high 
likelihood around local minima of that would otherwise be difficult to select by direct 
sampling of the prior.  

• Approach similar in spirit to Skilling’s nested sampling method, but with the advantage 
that it does not require uniform sampling below / above every energy / likelihood level, 
which is required in nested sampling and is hard to implement in practice.  

• Every trajectory contributes independently to the estimator, meaning that the 
implementation is trivially parallelizable. 

• Variance can be estimated in the small friction limit, and depends on the complexity of 
the Reeb graph of the energy / likelihood.  
 

Conclusions


