## Importance sampling with non equilibrium trajectories



## Eric Vanden-Eijnden Courant Institute

Joint work with Grant Rotskoff
Computational Statistics and Molecular Simulation:
Refs: arXiv:1809.11132

## Partition function and density of states

- Given a measure $\mu$ on $\Omega \subset \mathbb{R}^{d}$, the partition function is the normalization factor

$$
Z=\int_{\Omega} d \mu(x)
$$

- Setting $U=-\log \left(d \mu / d \mu_{0}\right)$ the density of state $D(z)$ is

$$
D(u)=\frac{d V}{d u} \text { where } V(u)=\int_{U(x)<u} d \mu_{0}(\boldsymbol{x}) \text { so that } \quad Z=\int_{\mathbb{R}} e^{-u} D(u) d u
$$

$\triangleright$ Statistical mechanics: If $d \mu(\boldsymbol{x})=e^{-\beta U(\boldsymbol{x})} d \boldsymbol{x}$ for some $U: \Omega \rightarrow[0, \infty), \quad D(E)$ gives $\mathrm{Z}(\beta)$ at any $\beta$

$$
Z(\beta)=\int_{\Omega} \exp (-\beta U(\boldsymbol{x})) d \boldsymbol{x}, \quad D(E)=\int_{\Omega} \delta(E-U(\boldsymbol{x})) d \boldsymbol{x} \quad Z(\beta)=\int_{\mathbb{R}} e^{-\beta z} D(z) d z
$$

$\triangleright$ Bayesian inference: If $L(\boldsymbol{y} \mid \boldsymbol{x}, M)$ is the likelihood of the data $\boldsymbol{y}$ given the parameters $\boldsymbol{x}$ and the model $M$, and $d \mu_{0}(\boldsymbol{x})$ is the (normalized) prior, $d \mu(\boldsymbol{x})=L(\boldsymbol{y} \mid \boldsymbol{x}, M) d \mu_{0}(\boldsymbol{x})$ is the posterior and

$$
Z(\boldsymbol{y}, M)=\int_{\Omega} L(\boldsymbol{y} \mid \boldsymbol{x}, M) d \mu_{0}(\boldsymbol{x}) \quad \text { is the evidence }
$$

- Methods to estimate $Z$ and $D(u)$ include thermodynamic integration, Wang-Landau, simulated / parallel tempering, nested sampling, etc. - note that $V(u)=\mathbb{P}_{0}(U(\boldsymbol{x})<u)$ is an observable, but $Z$ is not.
- Typically hard to compute in high dimension because of (i) multimodality of $\mu$ and (ii) entropic effects.


## Importance sampling along trajectories

- Expectations via reweighing: Given an observable $\phi: \Omega \rightarrow \mathbb{R}$, and two measures $\mu_{0}$ and $\mu_{1}$ such that $\mu_{0} \ll \mu_{1}$

$$
\mu_{0}(\phi)=\int_{\Omega} \phi d \mu_{0}=\int_{\Omega} \phi \frac{d \mu_{0}}{d \mu_{1}} d \mu_{1}=\mu_{1}\left(\phi d \mu_{0} / d \mu_{1}\right)
$$

- Expectations along trajectories (with a flavor of PDMP): Given $\boldsymbol{b}: \Omega \rightarrow \mathbb{R}^{d}$ let

$$
\begin{gathered}
d \boldsymbol{X}(t, \boldsymbol{x}) / d t=\boldsymbol{b}(\boldsymbol{X}(t, \boldsymbol{x})), \quad \boldsymbol{X}(0, \boldsymbol{x})=\boldsymbol{x} \in \Omega \\
\tau_{-}(\boldsymbol{x})=\sup \{t<0: \boldsymbol{X}(t, \boldsymbol{x}) \in \partial \Omega\}, \quad \tau_{+}(\boldsymbol{x})=\inf \{t>0: \boldsymbol{X}(t, \boldsymbol{x}) \in \partial \Omega\}
\end{gathered}
$$

Given $\mu_{0}$, define $\mu_{1}$ via

$$
\mu_{1}(\phi)=\bar{\tau}^{-1} \int_{\Omega}\left(\int_{\tau_{-}(x)}^{\tau_{+}(\boldsymbol{x})} \phi(\boldsymbol{X}(t, \boldsymbol{x})) d t\right) d \mu_{0}(\boldsymbol{x}), \quad \bar{\tau}=\int_{\Omega}\left(\tau_{+}(\boldsymbol{x})-\tau_{-}(\boldsymbol{x})\right) d \mu_{0}(\boldsymbol{x})
$$

- Combining the two: We can write an expression for $\mu_{1}$ and use it to derive

$$
\mu_{0}(\phi)=\int_{\Omega} \frac{\left.\int_{\tau^{-}(\boldsymbol{x})}^{\tau^{+}(\boldsymbol{x}}\right) \phi(\boldsymbol{X}(t, \boldsymbol{x})) J(t, \boldsymbol{x}) \rho_{0}(\boldsymbol{X}(t, \boldsymbol{x})) d t}{\int_{\tau^{-}(\boldsymbol{x})}^{\tau^{+}(\boldsymbol{x})} J(t, \boldsymbol{x}) \rho_{0}(\boldsymbol{X}(t, \boldsymbol{x})) d t} d \mu_{0}(\boldsymbol{x})
$$

where $\rho_{0}=d \mu_{0} / d \boldsymbol{x}$ and

$$
J(t, \boldsymbol{x})=\exp \left(\int_{0}^{t} \operatorname{div} \boldsymbol{b}(X(s, \boldsymbol{x})) d s\right)
$$

$$
\mu_{0}(\phi)=\int_{\Omega} \frac{\int_{\left.\tau_{-(\boldsymbol{x}}\right)}^{\tau^{+}(\boldsymbol{x})} \phi(\boldsymbol{X}(t, \boldsymbol{x})) J(t, \boldsymbol{x}) \rho_{0}(\boldsymbol{X}(t, \boldsymbol{x})) d t}{\int_{\left.\tau^{+(\boldsymbol{x}}\right)}^{\left.\tau^{+\boldsymbol{x}}\right)} J(t, \boldsymbol{x}) \rho_{0}(\boldsymbol{X}(t, \boldsymbol{x})) d t} d \mu_{0}(\boldsymbol{x})
$$

## Back to the density of states

- Extending the state-space: Given $d \mu(\boldsymbol{q})=e^{-U(\boldsymbol{q})} d \boldsymbol{q}$, let

$$
d \boldsymbol{q} / d t=\boldsymbol{p}, \quad d \boldsymbol{p} / d t=-\nabla U(\boldsymbol{q})-\gamma \boldsymbol{p} \quad(\gamma>0)
$$

- Then $Z=(2 \pi)^{d / 2} Z_{q}$ with

$$
Z_{q}=\int_{\Omega} e^{-U(q)} d \boldsymbol{q} \quad \text { and } \quad Z=\int_{\Omega \times \mathbb{R}^{d}} e^{-H(q, p)} d \boldsymbol{q} d \boldsymbol{p} \text { with } H(\boldsymbol{q}, \boldsymbol{p})=\frac{1}{2}|\boldsymbol{p}|^{2}+U(\boldsymbol{q})
$$

- Using div $\boldsymbol{b}=d \gamma$, if in the previous formula we set

$$
d \mu_{0}(\boldsymbol{q}, \boldsymbol{p})=V_{0}^{-1} \mathbf{1}\left(H(\boldsymbol{q}, \boldsymbol{p})<E_{0}\right) d \boldsymbol{q} d \boldsymbol{p}, \quad \text { and } \quad \phi(\boldsymbol{q}, \boldsymbol{p})=\mathbf{1}(H(\boldsymbol{q}, \boldsymbol{p})<E) \quad\left(E \leq E_{0}\right)
$$

we deduce

$$
V(E)=\int_{H(\boldsymbol{q}, \boldsymbol{p})<E} d \boldsymbol{q} d \boldsymbol{p}=\int_{H(\boldsymbol{q}, \boldsymbol{p})<E_{0}} e^{-d \gamma\left(\tau_{E}(\boldsymbol{q}, \boldsymbol{p})-\tau_{0}(\boldsymbol{q}, \boldsymbol{p})\right)} d \boldsymbol{q} d \boldsymbol{p}
$$

where

$$
\tau_{E}(\boldsymbol{q}, \boldsymbol{p})=\inf \{|t|: H(\boldsymbol{q}(t), \boldsymbol{p}(t))=E\}, \quad \tau_{0}(\boldsymbol{q}, \boldsymbol{p})=\inf \left\{t<0: H(\boldsymbol{q}(t), \boldsymbol{p}(t))=E_{0}\right\}
$$

- That is, $V(E) / V_{0}$ is the expectation of $e^{-d \gamma\left(\tau_{E}(\boldsymbol{q}, \boldsymbol{p})-\tau_{0}(\boldsymbol{q}, \boldsymbol{p})\right)}$ over initial data uniform in $H(\boldsymbol{q}, \boldsymbol{p})<E_{0}$.


## Variance of the estimator

From Freidlin \& Wentzell, Annals of Prob, 21, 2015 (1993)

- If we rescale time as $\gamma t \rightarrow t$ and let $\gamma \rightarrow 0$, the damped Hamiltonian dynamics reduces to descent on the Reeb (aka disconnectivity) graph of $H(\boldsymbol{q}, \boldsymbol{p})$ (which is that of $U(\boldsymbol{q})$ ), that is:
$\triangleright$ On each branch of the graph $E(t)=H(\boldsymbol{q}(t), \boldsymbol{p}(t))$ satisfies a closed equation depending on the geometry of the underlying basin;
$\triangleright$ At every branching point, the trajectory picks a branch at random with a probability that also depends only on the geometry of the basins.



## Variance of the estimator



- If we rescale time as $\gamma t \rightarrow t$ and let $\gamma \rightarrow 0$, the damped Hamiltonian dynamics reduces to descent on the Reeb (aka disconnectivity) graph of $H(\boldsymbol{q}, \boldsymbol{p})$ (which is that of $U(\boldsymbol{q})$ ), that is:
$\triangleright$ On each branch of the graph $E(t)=H(\boldsymbol{q}(t), \boldsymbol{p}(t))$ satisfies a closed equation depending on the geometry of the underlying basin;
$\triangleright$ At every branching point, the trajectory picks a branch at random with a probability that also depends only on the geometry of the basins.
- Indexing for $j=1, \ldots, M$ all the branches of the graph, let $\tau_{j}(E)>0$ (possibly infinite) be the (deterministic) time it takes the trajectory to go from $H(\boldsymbol{q}(0), \boldsymbol{p}(0))=E_{0}$ to $H(\boldsymbol{q}(t), \boldsymbol{p}(t))=E$.
- Denote by $p_{j}>0$ with $\sum_{j=1}^{M} p_{j}=1$ the probability (computed over initial data uniformly drawn over $\left.H(\boldsymbol{q}, \boldsymbol{p})<E_{0}\right)$ that the trajectory takes branch $j$.
- Then $\tau_{E}(\boldsymbol{q}, \boldsymbol{p})-\tau_{0}(\boldsymbol{q}, \boldsymbol{p})=\tau_{j}(E)$ with probability $p_{j}$ (i.e. depending only on whether the trajectory initiated at $(\boldsymbol{q}, \boldsymbol{p})$ travels on branch $j$ ).

$$
\text { mean }=V(E) / V_{0}=\sum_{j=1}^{M} p_{j} e^{-\gamma d \tau_{j}(E)}, \quad \text { var }=\sum_{j=1}^{M} p_{j} e^{-2 \gamma d \tau_{j}(E)}-\text { mean }^{2}
$$

## Quartic well example

$$
\operatorname{var}=\sum_{j=1}^{M} p_{j} e^{-2 \gamma d \tau_{j}(E)}-\text { mean }^{2}
$$

- If there is only one well ( $\mu_{0}$ is monomodal), the variance is zero! A single trajectory does the job if $\gamma$ is small enough


Results with a single trajectory for

$$
U(\boldsymbol{q})=\sum_{j=1}^{d}\left(\boldsymbol{b}_{j} \cdot \boldsymbol{q}\right)^{4}
$$

with some random $\boldsymbol{b}_{j} \in \mathbb{R}^{d}$. Here

$$
V(E) / V_{0}=\left(E / E_{0}\right)^{3 d / 4}
$$

and we took $\gamma=.1 \min _{j}\left|b_{j}\right|$.
Similar results for $U(\boldsymbol{q})=\sum_{j=1}^{d}\left(\boldsymbol{b}_{j} \cdot \boldsymbol{q}\right)^{2}$.

- Note that this implies a $O\left(\gamma^{-1}\right)$ cost to integrate the equations to the relevant time scale, and how small $\gamma$ needs to be depends on the dimension in general.


## Curie-Weiss model

- Curie-Weiss model for $N$ continuous spins $\sigma_{i}=\cos \left(q_{i}\right)$ with potential


$$
U(\boldsymbol{q})=-N^{-1} \sum_{i, j=1}^{N} \cos \left(q_{i}\right) \cos \left(q_{j}\right)
$$

In the limit as $N \rightarrow \infty$, the model exhibits a second order phase transition at $\beta=2$, because entropic effects that favor disorganized spin configurations dominate at high temperatures, whereas energetic effects that favor $\cos \left(q_{j}\right)= \pm 1$ dominate at low temperatures.


- Correspondingly, the density of states decreases rapidly with the energy, since lowering $U(\boldsymbol{q})$ to its minimum value $E=-N$ requires to align the spins, and the number of aligned configurations is much less that the number of disorganized ones.
- This effect can be estimated analytically via LDT by estimating the entropy of the magnetization

$$
m=N^{-1} \sum_{i=1}^{N} \cos \left(q_{i}\right)
$$

Result for $N=100$ spins with a single trajectory run at $\gamma=10^{-3}$.

## Bayesian inference test-case



- Mixture of Gaussians model as benchmark for inference problems. The model is defined as a mixture of $n$ distributions in dimension $d$ with amplitudes $A_{i}$, means $\mu_{i}$ and covariances $\Sigma_{i}$

$$
L(\boldsymbol{x})=\sum_{i=1}^{n} A_{i} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{i}\right)\right) .
$$

Though we do not have access to the exact expression for $V(E)$ at all energy levels in this model, we can evaluate the partition function $Z$ exactly.


Result with $n=50$ wells with depths exponentially distributed in dimension $d=10$, an example much more complex than previous benchmarks. In this regime, brute force Monte Carlo approaches fail dramatically. The volume estimator, with only 100 trajectories, reaches the deepest minima in a nontrivial estimation problem. Furthermore, the low energy volume estimates are reasonably accurate: we compute $Z=17.41$ versus the exact result $Z=17.10$.

## Conclusions

- Estimator using trajectories that are guaranteed to visit regions of low energy / high likelihood around local minima of that would otherwise be difficult to select by direct sampling of the prior.
- Approach similar in spirit to Skilling's nested sampling method, but with the advantage that it does not require uniform sampling below / above every energy / likelihood level, which is required in nested sampling and is hard to implement in practice.
- Every trajectory contributes independently to the estimator, meaning that the implementation is trivially parallelizable.
- Variance can be estimated in the small friction limit, and depends on the complexity of the Reeb graph of the energy / likelihood.

