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PDMPs

Informally: Deterministic dynamics + Jump Process

Stochastic process Zt which

1 Follows a deterministic path, until

2 An event occurs, at a certain rate, upon which

3 The position jumps, and then

4 Resumes following the deterministic path
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Specifying a PDMP

Today: PDMPs from ODEs

Vector field φ(z)

Use dynamics dz
dt

= φ(z)

Event rate λ(z) > 0

Dictates how often events happen (inhomogeneous Poisson process)

Transition dynamics Q(z → dz′)

Dictates what happens at events (Markov jump kernel)
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PDMPs for MCMC

Want π(dx), but work on extended target:

Set z = (x, v).

Choose your own ψ(dv).

Target is then µ(dz) = π(dx)ψ(dv).

Typically, jumps fix x; Xt has continuous sample paths.

Question:

Given target measure µ, vector field φ, (1)
how can I build (λ,Q) to sample µ ? (2)
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Aside on Reversibility, Symmetry

Reversibility

Much MCMC work built on reversible methods

PDMPs are generally non-reversible

To design algorithms, locality is the important part

Symmetry

Existing PDMPs are highly symmetric (BPS, ZZ)

A priori, not necessary to have symmetry

Want to be able to use all ODEs!
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Time-Augmented PDMPs

Idea:

1 Introduce ‘direction of time’ variable τ ∈ {±1}

2 Target µ̃(dz, dτ) = µ(dz)R(dτ).

Write φ(z, τ) = τ · φ(z); use dynamics dz
dt = φ(z, τ)

Solve system forwards and backwards in time

Let λ = λ(z, τ)

Stipulate that, at events, τ 7→ −τ , i.e.

Q((z, τ)→ (dz′, dτ ′)) = Qτ (z → dz′) · δ(−τ, dτ ′) (3)

‘Trajectorial Reversibility’ ; checking exactness becomes local !

‘in at z forwards in time = out at z backwards in time’
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Choice of Event Rate (1)

Consider ‘probability current’

r(z, τ) , 〈∇H(z), φ(z, τ)〉︸ ︷︷ ︸
Energy Gain

− divzφ(z, τ)︸ ︷︷ ︸
Compressibility Penalty

(4)

Define ‘natural’ event rate as

λ0(z, τ) = (r(z, τ))+ (5)

where (u)+ = max(0, u)

Let γ(z) > 0 be some ‘refreshment rate’.

We will take λ(z, τ) = λ0(z, τ) + γ(z)
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Choice of Transition Dynamics

Define ‘jump measure’:

Jτ (dz) ∝ µ(dz)λ(z, τ) (6)

Want trajectorial reversibility

=⇒ Need jump chain reversible w.r.t. jump measure

; Choose qτ (z → dz′) to be Jτ -reversible
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Putting together the ingredients

Theorem
If (φ, λ,Q) are chosen in this way, then the resulting PDMP is trajectorially
reversible, and admits µ̃ as a stationary measure.

Theorem
If (φ, λ,Q) is a trajectorially-reversible, µ̃-stationary TA-PDMP, then
∃ γ > 0 such that

λ(z, τ) = λ0(z, τ) + γ(z) (7)

and for τ ∈ {±1}, Qτ is Jτ -reversible
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Split PDMPs (1)

Many PDMPs in use have different types of event

Refreshment

Zig-Zag

Local BPS (Factor Graph)

Subsampling

· · ·

Each event type affects different parts of the system

Key point: Different event types correspond to decompositions of r
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Split PDMPs (2)

z = (z1, · · · , zD), τ = (τ1, · · · , τD) ∈ {±1}D

φ(z, τ) = τ � φ(z) = (τ1φ1(z), · · · , τDφD(z))

Assume decomposition

r(z, τ) =
M∑
j=1

rj(z, τ) (8)

and existence of involutions Fj : {±1}D → {±1}D such that

rj(z,Fj(τ)) = −rj(z, τ) (9)

Events of type j happen at rate λj(z, τ)

and then jump according to Qτj (z → dz′) · δ(Fj(τ), dτ ′)

Sam Power (Cambridge) PDMPs via ODEs November 15, 2018 12 / 17



Split PDMPs (2)

z = (z1, · · · , zD), τ = (τ1, · · · , τD) ∈ {±1}D

φ(z, τ) = τ � φ(z) = (τ1φ1(z), · · · , τDφD(z))

Assume decomposition

r(z, τ) =

M∑
j=1

rj(z, τ) (8)

and existence of involutions Fj : {±1}D → {±1}D such that

rj(z,Fj(τ)) = −rj(z, τ) (9)

Events of type j happen at rate λj(z, τ)

and then jump according to Qτj (z → dz′) · δ(Fj(τ), dτ ′)

Sam Power (Cambridge) PDMPs via ODEs November 15, 2018 12 / 17



Split PDMPs (2)

z = (z1, · · · , zD), τ = (τ1, · · · , τD) ∈ {±1}D

φ(z, τ) = τ � φ(z) = (τ1φ1(z), · · · , τDφD(z))

Assume decomposition

r(z, τ) =

M∑
j=1

rj(z, τ) (8)

and existence of involutions Fj : {±1}D → {±1}D such that

rj(z,Fj(τ)) = −rj(z, τ) (9)

Events of type j happen at rate λj(z, τ)

and then jump according to Qτj (z → dz′) · δ(Fj(τ), dτ ′)

Sam Power (Cambridge) PDMPs via ODEs November 15, 2018 12 / 17



Making Split-PDMPs work (1)

Define

λ0j (z, τ) = (rj(z, τ))+ (10)

λj(z, τ) = λ0j (z, τ) + γj(z, τ) (11)

Define

Jτj (dz) ∝ µ(dz)λj(z, τ) (12)

and for each τ ∈ {±1}D, take Qτj to be Jτj -reversible.

Theorem
This leads to trajectorially-reversible, µ̃-stationary Split PDMPs.

Theorem
Given a fixed splitting, all trajectorially-reversible, µ̃-stationary Split
PDMPs take this form.
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Algorithm Design Pipeline (1)

Non-negotiable: we want samples from π(dx).

1 Decide on v.

2 Decide on φ.

3 Decide on ψ(dv) (and hence µ).

4 Write down r, decide on a splitting.

5 Write down λ0, decide on γ (and hence λ).

6 Decide on Q.
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Algorithm Design Pipeline (2)

Choosing Q is often least obvious; order of preference:

1 Sample from Jτ directly.

2 Sample from its restriction to a finite set. (e.g. BPS)

3 (Use a Metropolis-Hastings step).

Choosing ψ could make a big difference; dictates µ.

Can have ψ(dv|x) (relatively unexplored)

Choosing φ: some room for creativity here.
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Remarks, Open Questions, Takeaways

Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs

Conjecture: Split as little as possible

Conjecture: Refresh as little as possible

Pinch of salt / ‘Pre-Asymptopia’: Maire, Vialaret (2018)

Implementation remains challenging

Splittings may help

Speculation: Better dynamics φ; opportunities

Curiosity : Tempering?
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Thank you!
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