PDMPs with ODE Dynamics

Sam Power
(joint with Sergio Bacallado)

November 15, 2018

Overview

(1) PDMPs
(2) PDMPs for MCMC
(3) Construction of Algorithms
(4) Remarks, Open Questions, Takeaways

- Informally: Deterministic dynamics + Jump Process
- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_{t} which
- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_{t} which
(1) Follows a deterministic path, until
- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_{t} which
(1) Follows a deterministic path, until

C己 An event occurs, at a certain rate, upon which

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_{t} which
(1) Follows a deterministic path, until
(2) An event occurs, at a certain rate, upon which
(3) The position jumps, and then
- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_{t} which
(1) Follows a deterministic path, until
(2) An event occurs, at a certain rate, upon which
(3) The position jumps, and then
(Resumes following the deterministic path
- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_{t} which
(1) Follows a deterministic path, until
(2) An event occurs, at a certain rate, upon which
(3) The position jumps, and then
- Resumes following the deterministic path

Specifying a PDMP

- Today: PDMPs from ODEs

Specifying a PDMP

- Today: PDMPs from ODEs
- Vector field $\phi(z)$
- Use dynamics $\frac{d z}{d t}=\phi(z)$

Specifying a PDMP

- Today: PDMPs from ODEs
- Vector field $\phi(z)$
- Use dynamics $\frac{d z}{d t}=\phi(z)$
- Event rate $\lambda(z) \geqslant 0$
- Dictates how often events happen (inhomogeneous Poisson process)

Specifying a PDMP

- Today: PDMPs from ODEs
- Vector field $\phi(z)$
- Use dynamics $\frac{d z}{d t}=\phi(z)$
- Event rate $\lambda(z) \geqslant 0$
- Dictates how often events happen (inhomogeneous Poisson process)
- Transition dynamics $Q\left(z \rightarrow d z^{\prime}\right)$
- Dictates what happens at events (Markov jump kernel)

PDMPs for MCMC

- Want $\pi(d x)$, but work on extended target:

PDMPs for MCMC

- Want $\pi(d x)$, but work on extended target:
- Set $z=(x, v)$.

PDMPs for MCMC

- Want $\pi(d x)$, but work on extended target:
- Set $z=(x, v)$.
- Choose your own $\psi(d v)$.

PDMPs for MCMC

- Want $\pi(d x)$, but work on extended target:
- Set $z=(x, v)$.
- Choose your own $\psi(d v)$.
- Target is then $\mu(d z)=\pi(d x) \psi(d v)$.

PDMPs for MCMC

- Want $\pi(d x)$, but work on extended target:
- Set $z=(x, v)$.
- Choose your own $\psi(d v)$.
- Target is then $\mu(d z)=\pi(d x) \psi(d v)$.
- Typically, jumps fix $x \leadsto X_{t}$ has continuous sample paths.

PDMPs for MCMC

- Want $\pi(d x)$, but work on extended target:
- Set $z=(x, v)$.
- Choose your own $\psi(d v)$.
- Target is then $\mu(d z)=\pi(d x) \psi(d v)$.
- Typically, jumps fix $x \leadsto X_{t}$ has continuous sample paths.
- Question:

> Given target measure μ, vector field ϕ, how can I build (λ, Q) to sample μ ?

Aside on Reversibility, Symmetry

- Reversibility
- Much MCMC work built on reversible methods
- PDMPs are generally non-reversible
- To design algorithms, locality is the important part

Aside on Reversibility, Symmetry

- Reversibility
- Much MCMC work built on reversible methods
- PDMPs are generally non-reversible
- To design algorithms, locality is the important part
- Symmetry
- Existing PDMPs are highly symmetric (BPS, ZZ)
- A priori, not necessary to have symmetry
- Want to be able to use all ODEs!

Time-Augmented PDMPs

- Idea:

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$
(2) Target $\tilde{\mu}(d z, d \tau)=\mu(d z) R(d \tau)$.

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$
(2) Target $\tilde{\mu}(d z, d \tau)=\mu(d z) R(d \tau)$.
- Write $\phi(z, \tau)=\tau \cdot \phi(z)$; use dynamics $\frac{d z}{d t}=\phi(z, \tau)$

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$
(2) Target $\tilde{\mu}(d z, d \tau)=\mu(d z) R(d \tau)$.
- Write $\phi(z, \tau)=\tau \cdot \phi(z)$; use dynamics $\frac{d z}{d t}=\phi(z, \tau)$
- Solve system forwards and backwards in time

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$
(2) Target $\tilde{\mu}(d z, d \tau)=\mu(d z) R(d \tau)$.
- Write $\phi(z, \tau)=\tau \cdot \phi(z)$; use dynamics $\frac{d z}{d t}=\phi(z, \tau)$
- Solve system forwards and backwards in time
- Let $\lambda=\lambda(z, \tau)$

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$
(2) Target $\tilde{\mu}(d z, d \tau)=\mu(d z) R(d \tau)$.
- Write $\phi(z, \tau)=\tau \cdot \phi(z)$; use dynamics $\frac{d z}{d t}=\phi(z, \tau)$
- Solve system forwards and backwards in time
- Let $\lambda=\lambda(z, \tau)$
- Stipulate that, at events, $\tau \mapsto-\tau$, i.e.

$$
\begin{equation*}
Q\left((z, \tau) \rightarrow\left(d z^{\prime}, d \tau^{\prime}\right)\right)=Q^{\tau}\left(z \rightarrow d z^{\prime}\right) \cdot \delta\left(-\tau, d \tau^{\prime}\right) \tag{3}
\end{equation*}
$$

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$
(2) Target $\tilde{\mu}(d z, d \tau)=\mu(d z) R(d \tau)$.
- Write $\phi(z, \tau)=\tau \cdot \phi(z)$; use dynamics $\frac{d z}{d t}=\phi(z, \tau)$
- Solve system forwards and backwards in time
- Let $\lambda=\lambda(z, \tau)$
- Stipulate that, at events, $\tau \mapsto-\tau$, i.e.

$$
\begin{equation*}
Q\left((z, \tau) \rightarrow\left(d z^{\prime}, d \tau^{\prime}\right)\right)=Q^{\tau}\left(z \rightarrow d z^{\prime}\right) \cdot \delta\left(-\tau, d \tau^{\prime}\right) \tag{3}
\end{equation*}
$$

- 'Trajectorial Reversibility' \leadsto checking exactness becomes local!

Time-Augmented PDMPs

- Idea:
(1) Introduce 'direction of time' variable $\tau \in\{ \pm 1\}$
(2) Target $\tilde{\mu}(d z, d \tau)=\mu(d z) R(d \tau)$.
- Write $\phi(z, \tau)=\tau \cdot \phi(z)$; use dynamics $\frac{d z}{d t}=\phi(z, \tau)$
- Solve system forwards and backwards in time
- Let $\lambda=\lambda(z, \tau)$
- Stipulate that, at events, $\tau \mapsto-\tau$, i.e.

$$
\begin{equation*}
Q\left((z, \tau) \rightarrow\left(d z^{\prime}, d \tau^{\prime}\right)\right)=Q^{\tau}\left(z \rightarrow d z^{\prime}\right) \cdot \delta\left(-\tau, d \tau^{\prime}\right) \tag{3}
\end{equation*}
$$

- 'Trajectorial Reversibility' \leadsto checking exactness becomes local!
- 'in at z forwards in time $=$ out at z backwards in time'

Choice of Event Rate (1)

- Consider 'probability current'

$$
\begin{equation*}
r(z, \tau) \triangleq \underbrace{\langle\nabla H(z), \phi(z, \tau)\rangle}_{\text {Energy Gain }}-\underbrace{\operatorname{div}_{z} \phi(z, \tau)}_{\text {Compressibility Penalty }} \tag{4}
\end{equation*}
$$

Choice of Event Rate (1)

- Consider 'probability current'

$$
\begin{equation*}
r(z, \tau) \triangleq \underbrace{\langle\nabla H(z), \phi(z, \tau)\rangle}_{\text {Energy Gain }}-\underbrace{\operatorname{div}_{z} \phi(z, \tau)}_{\text {Compressibility Penalty }} \tag{4}
\end{equation*}
$$

- Define 'natural' event rate as

$$
\begin{equation*}
\lambda^{0}(z, \tau)=(r(z, \tau))_{+} \tag{5}
\end{equation*}
$$

where $(u)_{+}=\max (0, u)$

Choice of Event Rate (1)

- Consider 'probability current'

$$
\begin{equation*}
r(z, \tau) \triangleq \underbrace{\langle\nabla H(z), \phi(z, \tau)\rangle}_{\text {Energy Gain }}-\underbrace{\operatorname{div}_{z} \phi(z, \tau)}_{\text {Compressibility Penalty }} \tag{4}
\end{equation*}
$$

- Define 'natural' event rate as

$$
\begin{equation*}
\lambda^{0}(z, \tau)=(r(z, \tau))_{+} \tag{5}
\end{equation*}
$$

where $(u)_{+}=\max (0, u)$

- Let $\gamma(z) \geqslant 0$ be some 'refreshment rate'.

Choice of Event Rate (1)

- Consider 'probability current'

$$
\begin{equation*}
r(z, \tau) \triangleq \underbrace{\langle\nabla H(z), \phi(z, \tau)\rangle}_{\text {Energy Gain }}-\underbrace{\operatorname{div}_{z} \phi(z, \tau)}_{\text {Compressibility Penalty }} \tag{4}
\end{equation*}
$$

- Define 'natural' event rate as

$$
\begin{equation*}
\lambda^{0}(z, \tau)=(r(z, \tau))_{+} \tag{5}
\end{equation*}
$$

where $(u)_{+}=\max (0, u)$

- Let $\gamma(z) \geqslant 0$ be some 'refreshment rate'.
- We will take $\lambda(z, \tau)=\lambda^{0}(z, \tau)+\gamma(z)$

Choice of Transition Dynamics

- Define 'jump measure':

$$
\begin{equation*}
J^{\tau}(d z) \propto \mu(d z) \lambda(z, \tau) \tag{6}
\end{equation*}
$$

Choice of Transition Dynamics

- Define 'jump measure':

$$
\begin{equation*}
J^{\tau}(d z) \propto \mu(d z) \lambda(z, \tau) \tag{6}
\end{equation*}
$$

- Want trajectorial reversibility

Choice of Transition Dynamics

- Define 'jump measure':

$$
\begin{equation*}
J^{\tau}(d z) \propto \mu(d z) \lambda(z, \tau) \tag{6}
\end{equation*}
$$

- Want trajectorial reversibility
- \Longrightarrow Need jump chain reversible w.r.t. jump measure

Choice of Transition Dynamics

- Define 'jump measure':

$$
\begin{equation*}
J^{\tau}(d z) \propto \mu(d z) \lambda(z, \tau) \tag{6}
\end{equation*}
$$

- Want trajectorial reversibility
- \Longrightarrow Need jump chain reversible w.r.t. jump measure
- \sim Choose $q^{\tau}\left(z \rightarrow d z^{\prime}\right)$ to be J^{τ}-reversible

Putting together the ingredients

Theorem

If (ϕ, λ, Q) are chosen in this way, then the resulting PDMP is trajectorially reversible, and admits $\tilde{\mu}$ as a stationary measure.

Putting together the ingredients

Theorem

If (ϕ, λ, Q) are chosen in this way, then the resulting PDMP is trajectorially reversible, and admits $\tilde{\mu}$ as a stationary measure.

Theorem

If (ϕ, λ, Q) is a trajectorially-reversible, $\tilde{\mu}$-stationary TA-PDMP, then $\exists \gamma \geqslant 0$ such that

$$
\begin{equation*}
\lambda(z, \tau)=\lambda^{0}(z, \tau)+\gamma(z) \tag{7}
\end{equation*}
$$

and for $\tau \in\{ \pm 1\}, Q^{\tau}$ is J^{τ}-reversible

Split PDMPs (1)

- Many PDMPs in use have different types of event

Split PDMPs (1)

- Many PDMPs in use have different types of event
- Refreshment
- Zig-Zag
- Local BPS (Factor Graph)
- Subsampling

Split PDMPs (1)

- Many PDMPs in use have different types of event
- Refreshment
- Zig-Zag
- Local BPS (Factor Graph)
- Subsampling
- ...
- Each event type affects different parts of the system

Split PDMPs (1)

- Many PDMPs in use have different types of event
- Refreshment
- Zig-Zag
- Local BPS (Factor Graph)
- Subsampling
- ...
- Each event type affects different parts of the system
- Key point: Different event types correspond to decompositions of r

Split PDMPs (2)

- $z=\left(z_{1}, \cdots, z_{D}\right), \tau=\left(\tau_{1}, \cdots, \tau_{D}\right) \in\{ \pm 1\}^{D}$
- $\phi(z, \tau)=\tau \odot \phi(z)=\left(\tau_{1} \phi_{1}(z), \cdots, \tau_{D} \phi_{D}(z)\right)$

Split PDMPs (2)

- $z=\left(z_{1}, \cdots, z_{D}\right), \tau=\left(\tau_{1}, \cdots, \tau_{D}\right) \in\{ \pm 1\}^{D}$
- $\phi(z, \tau)=\tau \odot \phi(z)=\left(\tau_{1} \phi_{1}(z), \cdots, \tau_{D} \phi_{D}(z)\right)$
- Assume decomposition

$$
\begin{equation*}
r(z, \tau)=\sum_{j=1}^{M} r_{j}(z, \tau) \tag{8}
\end{equation*}
$$

and existence of involutions $\mathcal{F}_{j}:\{ \pm 1\}^{D} \rightarrow\{ \pm 1\}^{D}$ such that

$$
\begin{equation*}
r_{j}\left(z, \mathcal{F}_{j}(\tau)\right)=-r_{j}(z, \tau) \tag{9}
\end{equation*}
$$

Split PDMPs (2)

- $z=\left(z_{1}, \cdots, z_{D}\right), \tau=\left(\tau_{1}, \cdots, \tau_{D}\right) \in\{ \pm 1\}^{D}$
- $\phi(z, \tau)=\tau \odot \phi(z)=\left(\tau_{1} \phi_{1}(z), \cdots, \tau_{D} \phi_{D}(z)\right)$
- Assume decomposition

$$
\begin{equation*}
r(z, \tau)=\sum_{j=1}^{M} r_{j}(z, \tau) \tag{8}
\end{equation*}
$$

and existence of involutions $\mathcal{F}_{j}:\{ \pm 1\}^{D} \rightarrow\{ \pm 1\}^{D}$ such that

$$
\begin{equation*}
r_{j}\left(z, \mathcal{F}_{j}(\tau)\right)=-r_{j}(z, \tau) \tag{9}
\end{equation*}
$$

- Events of type j happen at rate $\lambda_{j}(z, \tau)$
- and then jump according to $Q_{j}^{\tau}\left(z \rightarrow d z^{\prime}\right) \cdot \delta\left(\mathcal{F}_{j}(\tau), d \tau^{\prime}\right)$

Making Split-PDMPs work (1)

- Define

$$
\begin{align*}
& \lambda_{j}^{0}(z, \tau)=\left(r_{j}(z, \tau)\right)_{+} \tag{10}\\
& \lambda_{j}(z, \tau)=\lambda_{j}^{0}(z, \tau)+\gamma_{j}(z, \tau) \tag{11}
\end{align*}
$$

Making Split-PDMPs work (1)

- Define

$$
\begin{align*}
& \lambda_{j}^{0}(z, \tau)=\left(r_{j}(z, \tau)\right)_{+} \tag{10}\\
& \lambda_{j}(z, \tau)=\lambda_{j}^{0}(z, \tau)+\gamma_{j}(z, \tau) \tag{11}
\end{align*}
$$

- Define

$$
\begin{equation*}
J_{j}^{\tau}(d z) \propto \mu(d z) \lambda_{j}(z, \tau) \tag{12}
\end{equation*}
$$

and for each $\tau \in\{ \pm 1\}^{D}$, take Q_{j}^{τ} to be J_{j}^{τ}-reversible.

Making Split-PDMPs work (1)

- Define

$$
\begin{align*}
& \lambda_{j}^{0}(z, \tau)=\left(r_{j}(z, \tau)\right)_{+} \tag{10}\\
& \lambda_{j}(z, \tau)=\lambda_{j}^{0}(z, \tau)+\gamma_{j}(z, \tau) \tag{11}
\end{align*}
$$

- Define

$$
\begin{equation*}
J_{j}^{\tau}(d z) \propto \mu(d z) \lambda_{j}(z, \tau) \tag{12}
\end{equation*}
$$

and for each $\tau \in\{ \pm 1\}^{D}$, take Q_{j}^{τ} to be J_{j}^{τ}-reversible.

Theorem

This leads to trajectorially-reversible, $\tilde{\mu}$-stationary Split PDMPs.

Making Split-PDMPs work (1)

- Define

$$
\begin{align*}
& \lambda_{j}^{0}(z, \tau)=\left(r_{j}(z, \tau)\right)_{+} \tag{10}\\
& \lambda_{j}(z, \tau)=\lambda_{j}^{0}(z, \tau)+\gamma_{j}(z, \tau) \tag{11}
\end{align*}
$$

- Define

$$
\begin{equation*}
J_{j}^{\tau}(d z) \propto \mu(d z) \lambda_{j}(z, \tau) \tag{12}
\end{equation*}
$$

and for each $\tau \in\{ \pm 1\}^{D}$, take Q_{j}^{τ} to be J_{j}^{τ}-reversible.

Theorem

This leads to trajectorially-reversible, $\tilde{\mu}$-stationary Split PDMPs.

Theorem

Given a fixed splitting, all trajectorially-reversible, $\tilde{\mu}$-stationary Split PDMPs take this form.

Algorithm Design Pipeline (1)

- Non-negotiable: we want samples from $\pi(d x)$.

Algorithm Design Pipeline (1)

- Non-negotiable: we want samples from $\pi(d x)$.
(1) Decide on v.
(2) Decide on ϕ.
© Decide on $\psi(d v)$ (and hence μ).

Algorithm Design Pipeline (1)

- Non-negotiable: we want samples from $\pi(d x)$.
(1) Decide on v.
(2) Decide on ϕ.
(3) Decide on $\psi(d v)$ (and hence μ).
(-) Write down r, decide on a splitting.

Algorithm Design Pipeline (1)

- Non-negotiable: we want samples from $\pi(d x)$.
(1) Decide on v.
(3) Decide on ϕ.
(3) Decide on $\psi(d v)$ (and hence μ).
(-) Write down r, decide on a splitting.
(0) Write down λ^{0}, decide on γ (and hence λ).

Algorithm Design Pipeline (1)

- Non-negotiable: we want samples from $\pi(d x)$.
(1) Decide on v.
(2) Decide on ϕ.
(3) Decide on $\psi(d v)$ (and hence μ).
(-) Write down r, decide on a splitting.
(0) Write down λ^{0}, decide on γ (and hence λ).
(Decide on Q.

Algorithm Design Pipeline (2)

- Choosing Q is often least obvious; order of preference:

Algorithm Design Pipeline (2)

- Choosing Q is often least obvious; order of preference:
(1) Sample from J^{τ} directly.

Algorithm Design Pipeline (2)

- Choosing Q is often least obvious; order of preference:
(1) Sample from J^{τ} directly.
(2) Sample from its restriction to a finite set. (e.g. BPS)

Algorithm Design Pipeline (2)

- Choosing Q is often least obvious; order of preference:
(1) Sample from J^{τ} directly.
(2) Sample from its restriction to a finite set. (e.g. BPS)
© (Use a Metropolis-Hastings step).

Algorithm Design Pipeline (2)

- Choosing Q is often least obvious; order of preference:
(1) Sample from J^{τ} directly.
(2) Sample from its restriction to a finite set. (e.g. BPS)
© (Use a Metropolis-Hastings step).
- Choosing ψ could make a big difference; dictates μ.
- Can have $\psi(d v \mid x)$ (relatively unexplored)

Algorithm Design Pipeline (2)

- Choosing Q is often least obvious; order of preference:
(1) Sample from J^{τ} directly.
(2) Sample from its restriction to a finite set. (e.g. BPS)
(3) (Use a Metropolis-Hastings step).
- Choosing ψ could make a big difference; dictates μ.
- Can have $\psi(d v \mid x)$ (relatively unexplored)
- Choosing ϕ : some room for creativity here.

Remarks, Open Questions, Takeaways

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs

Remarks, Open Questions, Takeaways

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
- Conjecture: Split as little as possible

Remarks, Open Questions, Takeaways

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
- Conjecture: Split as little as possible
- Conjecture: Refresh as little as possible

Remarks, Open Questions, Takeaways

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
- Conjecture: Split as little as possible
- Conjecture: Refresh as little as possible
- Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)

Remarks, Open Questions, Takeaways

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
- Conjecture: Split as little as possible
- Conjecture: Refresh as little as possible
- Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
- Splittings may help

Remarks, Open Questions, Takeaways

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
- Conjecture: Split as little as possible
- Conjecture: Refresh as little as possible
- Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
- Splittings may help
- Speculation: Better dynamics $\phi \sim$ opportunities

Remarks, Open Questions, Takeaways

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
- Conjecture: Split as little as possible
- Conjecture: Refresh as little as possible
- Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
- Splittings may help
- Speculation: Better dynamics $\phi \sim$ opportunities
- Curiosity: Tempering?

Thank you!

