PDMPs with ODE Dynamics

Sam Power (joint with Sergio Bacallado)

Cambridge Centre for Analysis Cantab Capital Institute for the Mathematics of Information

sp825@cam.ac.uk

November 15, 2018

Sam Power (Cambridge)

PDMPs via ODEs

• Informally: Deterministic dynamics + Jump Process

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which
 - Follows a deterministic path, until

PDMPs

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which
 - Follows a deterministic path, until
 - An event occurs, at a certain rate, upon which

PDMPs

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which
 - Follows a deterministic path, until
 - An event occurs, at a certain rate, upon which
 - The position jumps, and then

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which
 - Follows a deterministic path, until
 - An event occurs, at a certain rate, upon which
 - The position jumps, and then
 - Resumes following the deterministic path

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which
 - Follows a deterministic path, until
 - An event occurs, at a certain rate, upon which
 - The position jumps, and then
 - Resumes following the deterministic path

• Today: PDMPs from ODEs

- Today: PDMPs from ODEs
 - $\bullet~{\rm Vector}~{\rm field}~\phi(z)$
 - Use dynamics $\frac{dz}{dt} = \phi(z)$

- Today: PDMPs from ODEs
 - Vector field $\phi(z)$
 - Use dynamics $\frac{dz}{dt} = \phi(z)$
 - Event rate $\lambda(z) \geqslant 0$
 - Dictates how often events happen (inhomogeneous Poisson process)

- Today: PDMPs from ODEs
 - Vector field $\phi(z)$
 - Use dynamics $\frac{dz}{dt} = \phi(z)$
 - Event rate $\lambda(z) \geqslant 0$
 - Dictates how often events happen (inhomogeneous Poisson process)
 - Transition dynamics $Q(z \rightarrow dz')$
 - Dictates what happens at events (Markov jump kernel)

• Want $\pi(dx)$, but work on extended target:

• Want $\pi(dx)$, but work on extended target:

• Set
$$z = (x, v)$$
.

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - Choose your own $\psi(dv).$

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - Choose your own $\psi(dv).$
 - Target is then $\mu(dz) = \pi(dx)\psi(dv)$.

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - Choose your own $\psi(dv)$.
 - Target is then $\mu(dz) = \pi(dx)\psi(dv)$.
- Typically, jumps fix $x \rightsquigarrow X_t$ has continuous sample paths.

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - Choose your own $\psi(dv)$.
 - Target is then $\mu(dz) = \pi(dx)\psi(dv)$.
- Typically, jumps fix $x \rightsquigarrow X_t$ has continuous sample paths.
- Question:

Given target measure μ , vector field ϕ , (1) how can I build (λ, Q) to sample μ ? (2)

Reversibility

- Much MCMC work built on reversible methods
- PDMPs are generally non-reversible
- To design algorithms, *locality* is the important part

Reversibility

- Much MCMC work built on reversible methods
- PDMPs are generally non-reversible
- To design algorithms, *locality* is the important part
- Symmetry
 - Existing PDMPs are highly symmetric (BPS, ZZ)
 - A priori, not necessary to have symmetry
 - Want to be able to use all ODEs!

• Idea:

• Idea:

Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

• Idea:

(Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

• Idea:

(Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

2 Target
$$\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$$
.

• Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$

• Idea:

(Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

2 Target
$$\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$$
.

• Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$

• Solve system forwards and backwards in time

Idea:

(Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

2 Target
$$\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$$
.

• Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$

- Solve system forwards and backwards in time
- $\bullet \ {\rm Let} \ \lambda = \lambda(z,\tau)$

Idea:

(Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

2 Target
$$\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$$
.

• Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$

- Solve system forwards and backwards in time
- Let $\lambda = \lambda(z, \tau)$
- Stipulate that, at events, $\tau \mapsto -\tau$, i.e.

$$Q((z,\tau) \to (dz', d\tau')) = Q^{\tau}(z \to dz') \cdot \delta(-\tau, d\tau')$$
(3)

Idea:

(Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

3 Target
$$\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$$
.

• Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$

• Solve system forwards and backwards in time

• Let $\lambda = \lambda(z, \tau)$

• Stipulate that, at events, $\tau \mapsto -\tau$, i.e.

$$Q((z,\tau) \to (dz', d\tau')) = Q^{\tau}(z \to dz') \cdot \delta(-\tau, d\tau')$$
(3)

• 'Trajectorial Reversibility' ~> checking exactness becomes local!

Idea:

(Introduce 'direction of time' variable $\tau \in \{\pm 1\}$

3 Target
$$\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$$
.

• Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$

• Solve system forwards and backwards in time

• Let $\lambda = \lambda(z, \tau)$

• Stipulate that, at events, $\tau \mapsto -\tau$, i.e.

$$Q((z,\tau) \to (dz', d\tau')) = Q^{\tau}(z \to dz') \cdot \delta(-\tau, d\tau')$$
(3)

- 'Trajectorial Reversibility' ~> checking exactness becomes local!
 - 'in at z forwards in time = out at z backwards in time'

Sam Power (Cambridge)

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\operatorname{div}_z \phi(z,\tau)}_{\text{Compressibility Penalty}}$$
(4)

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\operatorname{div}_z \phi(z,\tau)}_{\text{Compressibility Penalty}} \tag{4}$$

• Define 'natural' event rate as

$$\lambda^{0}(z,\tau) = (r(z,\tau))_{+}$$
 (5)

where $(u)_{+} = \max(0, u)$

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\operatorname{div}_{z}\phi(z,\tau)}_{\text{Compressibility Penalty}} \tag{4}$$

• Define 'natural' event rate as

$$\lambda^0(z,\tau) = (r(z,\tau))_+ \tag{5}$$

where $(u)_{+} = \max(0, u)$

• Let $\gamma(z) \ge 0$ be some 'refreshment rate'.

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\operatorname{div}_{z}\phi(z,\tau)}_{\text{Compressibility Penalty}} \tag{4}$$

• Define 'natural' event rate as

$$\lambda^0(z,\tau) = (r(z,\tau))_+ \tag{5}$$

where $(u)_{+} = \max(0, u)$

- Let $\gamma(z) \ge 0$ be some 'refreshment rate'.
- We will take $\lambda(z,\tau)=\lambda^0(z,\tau)+\gamma(z)$

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau) \tag{6}$$

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau) \tag{6}$$

• Want trajectorial reversibility

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau) \tag{6}$$

- Want trajectorial reversibility
 - \implies Need jump chain reversible w.r.t. jump measure

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau) \tag{6}$$

- Want trajectorial reversibility
 - \implies Need jump chain reversible w.r.t. jump measure
 - ${\: \bullet \: } \rightsquigarrow {\: {\rm Choose} \: } q^\tau(z \to dz') {\: {\rm to} \: {\rm be} \: J^\tau {\rm -reversible}$

Theorem

If (ϕ, λ, Q) are chosen in this way, then the resulting PDMP is trajectorially reversible, and admits $\tilde{\mu}$ as a stationary measure.

Theorem

If (ϕ, λ, Q) are chosen in this way, then the resulting PDMP is trajectorially reversible, and admits $\tilde{\mu}$ as a stationary measure.

Theorem

If (ϕ, λ, Q) is a trajectorially-reversible, $\tilde{\mu}$ -stationary TA-PDMP, then $\exists \gamma \ge 0$ such that

$$\lambda(z,\tau) = \lambda^0(z,\tau) + \gamma(z) \tag{7}$$

and for $\tau \in \{\pm 1\}$, Q^{τ} is J^{τ} -reversible

• Many PDMPs in use have different types of event

- Many PDMPs in use have different types of event
 - Refreshment
 - Zig-Zag
 - Local BPS (Factor Graph)
 - Subsampling
 - • •

- Many PDMPs in use have different types of event
 - Refreshment
 - Zig-Zag
 - Local BPS (Factor Graph)
 - Subsampling
 - • •
- Each event type affects different parts of the system

- Many PDMPs in use have different types of event
 - Refreshment
 - Zig-Zag
 - Local BPS (Factor Graph)
 - Subsampling
 - • •
- Each event type affects different parts of the system
- Key point: Different event types correspond to *decompositions* of r

Split PDMPs (2)

•
$$z = (z_1, \cdots, z_D), \ \tau = (\tau_1, \cdots, \tau_D) \in \{\pm 1\}^D$$

• $\phi(z,\tau) = \tau \odot \phi(z) = (\tau_1 \phi_1(z), \cdots, \tau_D \phi_D(z))$

Split PDMPs (2)

•
$$z = (z_1, \cdots, z_D), \ \tau = (\tau_1, \cdots, \tau_D) \in \{\pm 1\}^D$$

- $\phi(z,\tau) = \tau \odot \phi(z) = (\tau_1 \phi_1(z), \cdots, \tau_D \phi_D(z))$
- Assume decomposition

$$r(z,\tau) = \sum_{j=1}^{M} r_j(z,\tau)$$
(8)

and existence of involutions $\mathcal{F}_j: \{\pm 1\}^D \to \{\pm 1\}^D$ such that

$$r_j(z, \mathcal{F}_j(\tau)) = -r_j(z, \tau) \tag{9}$$

Split PDMPs (2)

•
$$z = (z_1, \cdots, z_D), \ \tau = (\tau_1, \cdots, \tau_D) \in \{\pm 1\}^D$$

- $\phi(z,\tau) = \tau \odot \phi(z) = (\tau_1 \phi_1(z), \cdots, \tau_D \phi_D(z))$
- Assume decomposition

$$r(z,\tau) = \sum_{j=1}^{M} r_j(z,\tau)$$
(8)

and existence of involutions $\mathcal{F}_j: \{\pm 1\}^D \to \{\pm 1\}^D$ such that

$$r_j(z, \mathcal{F}_j(\tau)) = -r_j(z, \tau) \tag{9}$$

• Events of type j happen at rate $\lambda_j(z,\tau)$

• and then jump according to $Q_j^{ au}(z o dz') \cdot \delta(\mathcal{F}_j(au), d au')$

Sam Power (Cambridge)

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+ \tag{10}$$

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau)$$
(11)

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+$$
 (10)

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau)$$
(11)

Define

$$J_j^{\tau}(dz) \propto \mu(dz) \lambda_j(z,\tau)$$
(12)

and for each $\tau \in \{\pm 1\}^D$, take Q_j^{τ} to be J_j^{τ} -reversible.

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+$$
 (10)

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau)$$
(11)

Define

$$J_j^{\tau}(dz) \propto \mu(dz) \lambda_j(z,\tau)$$
(12)

and for each $\tau \in \{\pm 1\}^D$, take Q_j^{τ} to be J_j^{τ} -reversible.

Theorem

This leads to trajectorially-reversible, $\tilde{\mu}$ -stationary Split PDMPs.

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+$$
 (10)

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau)$$
(11)

Define

$$J_j^{\tau}(dz) \propto \mu(dz) \lambda_j(z,\tau)$$
(12)

and for each $\tau \in \{\pm 1\}^D$, take Q_j^{τ} to be J_j^{τ} -reversible.

Theorem

This leads to trajectorially-reversible, $\tilde{\mu}$ -stationary Split PDMPs.

Theorem

Given a fixed splitting, all trajectorially-reversible, $\tilde{\mu}$ -stationary Split PDMPs take this form.

Sam Power (Cambridge)

• Non-negotiable: we want samples from $\pi(dx)$.

- Non-negotiable: we want samples from $\pi(dx)$.
 - Decide on v.
 - 2 Decide on ϕ .
 - **③** Decide on $\psi(dv)$ (and hence μ).

- Non-negotiable: we want samples from $\pi(dx)$.
 - Decide on v.
 - 2 Decide on ϕ .
 - O Decide on $\psi(dv)$ (and hence μ).
 - Write down r, decide on a splitting.

- Non-negotiable: we want samples from $\pi(dx)$.
 - Decide on v.
 - 2 Decide on ϕ .
 - **③** Decide on $\psi(dv)$ (and hence μ).
 - Write down r, decide on a splitting.
 - So Write down λ^0 , decide on γ (and hence λ).

- Non-negotiable: we want samples from $\pi(dx)$.
 - Decide on v.
 - 2 Decide on ϕ .
 - **(a)** Decide on $\psi(dv)$ (and hence μ).
 - Write down r, decide on a splitting.
 - So Write down λ^0 , decide on γ (and hence λ).
 - Decide on Q.

 $\bullet\,$ Choosing Q is often least obvious; order of preference:

- Choosing Q is often least obvious; order of preference:
 - **(**) Sample from J^{τ} directly.

- Choosing Q is often least obvious; order of preference:
 - **(**) Sample from J^{τ} directly.
 - Sample from its restriction to a finite set. (e.g. BPS)

- Choosing Q is often least obvious; order of preference:
 - **(**) Sample from J^{τ} directly.
 - Sample from its restriction to a finite set. (e.g. BPS)
 - (Use a Metropolis-Hastings step).

- Choosing Q is often least obvious; order of preference:
 - **(**) Sample from J^{τ} directly.
 - Sample from its restriction to a finite set. (e.g. BPS)
 - (Use a Metropolis-Hastings step).
- Choosing ψ could make a big difference; dictates μ .
 - Can have $\psi(dv|x)$ (relatively unexplored)

- Choosing Q is often least obvious; order of preference:
 - **(**) Sample from J^{τ} directly.
 - Sample from its restriction to a finite set. (e.g. BPS)
 - (Use a Metropolis-Hastings step).
- Choosing ψ could make a big difference; dictates μ .
 - Can have $\psi(dv|x)$ (relatively unexplored)
- Choosing ϕ : some room for creativity here.

• Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
 - Splittings may help

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
 - Splittings may help
- Speculation: Better dynamics $\phi \rightsquigarrow$ opportunities

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
 - Splittings may help
- Speculation: Better dynamics $\phi \rightsquigarrow$ opportunities
- *Curiosity*: Tempering?

Thank you!