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Two contexts

Characterization of folded and unfolded conformations in protein dynamic
model

Locally informed Markov chains
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Two contexts
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Context 1: Protein dynamics

Softwares allow to simulate protein dynamics (forward simulation):

input parameters
CPU
 a trajectory {zt , t > 0},

where zt ∈ Z ⊂ Rp (p � 1) includes distance/angle between amino acids,
energy levels, relative speeds, interactions with solvent, etc. at time t.

Some issues:

I analysis difficult (too many details)

I statistical problem

I computational problem: relevant processes have different characteristic
times

coarse graining the dynamics

Stochastic (typically Markov) processes used to model protein trajectories
{zt , t > 0}

{Xt , t > 0} , Xt ∈ X ,

where X is some high dimensional finite state-space.
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Context 2: Computational methods is Bayesian statistics

Bayesian context: observed data Y described by a likelihood model fX with
parameter X ∈ X ⊂ Rd and a prior p on X .

Bayesian analysis: estimate quantities

πφ := E {φ(X ) |Y } =

∫
X

π(dX |Y )φ(X ) , π(dX |Y ) ∝ p(dX )fX (Y ) .

Issue: E {φ(X ) |Y } is often intractable.

numerical integration

Many schemes (MC, Sequential MC, Importance-Sampling, etc.), focus is on
Markov chain Monte Carlo methods:

{Xk , k ∈ N} s.t.
1

n

n∑
k=1

φ(Xk)→ πφ (as)
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A common denominator in two contexts

Analysis/interpretation of Molecular dynamics ⇔ understand the Markov
semi-group {Pt , t > 0}

dPt

dt
= LPt , Pt(x , ·) := Px(Xt ∈ ·) ,

and in particular its generator L.
⇒ continuous time process, discrete state space

Inferring a parametric statistical model with MCMC ⇔ estimate how the
Markov kernel {Pk , k ∈ N}

Pk+1 = PkP , Pk(x , ·) := Px(Xk ∈ ·) ,

transform recursively any measure µ0 7→ µ0P s.t., for a large number of
applications k, ‖(µ0P

k)φ− πφ‖ ≈ 0, for some metric ‖ · ‖.
⇒ discrete time process, general state space
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Characterization of folded and unfolded conformations in
protein dynamic model
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Analysis of protein dynamics

A key property for a protein dynamics model {Xt , t > 0} is to identify folded
and unfolded states.

Figure: Protein folding pathway of 1E0G obtained in Langevin dynamics simulations
(A. Liwo et al, PNAS, 2005)

⇒ X is usually large, how to identify subsets F ⊂ X (resp. U ⊂ X) where the
protein is folded (resp. unfolded)?
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How is it done in practice?

Assumption

The process {Xt , t > 0} is µ-reversible, i.e. 〈Lx , y〉µ = 〈x ,Ly〉µ.

Algorithm 1 mapping X = {1, 2, . . . , d} → {U,F}
1: diagonalize L, get Sp(L) = {λ1, λ2, . . .} the right eigenvectors Φ1,Φ2, . . .

s.t:
LΦi = λiΦi , λ1 > λ2 > λ3 > · · ·

2: calculate the ratio r = λ3/λ2

3: if r is large enough (eg r > 10) normalize the second right eigenvector:

Φ2 7→ Φ̄2 :=

{
Φ2(i)−min Φ2

max Φ2 −min Φ2

}
i

4: for each i ∈ X,

I set i ∈ U if Φ2(σ−1(i))�1/2

I set i ∈ F if Φ2(σ−1(i))�1/2

see eg V. Buchete (2008).
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Analysis of the second right eigenvectors for Ala5 peptides at 250K (top)
and 350K (bottom), X = {1, 2, . . . , 32}
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Intuition behind the algorithm

Assumption

L is the generator of a reducible process with absorbing states U and F

Then,

I L1U = 0 L1F = 0
(for all h > 0 and all x ∈ X,
Ph1U(x) =

∫
Ph(x ,dy)1U(y) =

∫
U
Ph(x ,dy)1U(y) = 1U(x)).

I 0 ∈ Sp(L) with multiplicity 2

I Φ1 = 1U and Φ2 = 1F

Question
If L is not reducible but “nearly” reducible, would it allow to justify the
algorithm?
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Metastability

Definition
Dynamical phenomenon characterized by the existence of “sub”-processes with
well-separated time scales.

Figure: Process {Xt , t > 0} with four metastable subsets M1, . . . ,M4.
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Metastable processes: framework for analysis

I Work in Applied Maths and Stat. Phys.: M. Freidlin, A. Wendzell, A.
Bovier, F. Nier, S. Meyn, M. Slowik, A. Schilchting, etc.

I Focus is on the analysis of
I spectral properties
I convergence

of metastable reversible operators on discrete state space.

Different approaches:

I large deviation (path wise approach)

I potential theoretical approaches

13 / 31



Framework

Definition (First hitting time)

For all A ⊂ X, define τA := inf{t > 0, Xt ∈ A}.

Definition (ρ-metastability)

If there exists a subset M⊂ X and ρ < 1 s.t.

∀x ∈M, y ∈ X\M , Px

(
τM\{x} ≤ τx

)
≤ ρPy (τM ≤ τy ) ,

the process {Xt , t > 0} is said to be ρ-metastable w.r.t M.

Definition (Capacity)

∀ (A,B) ⊂ X, cap(A,B) =

∫
A

dµLhA,B

where hA,B is the equilibrium potential,

hA,B(x) = Px(τA < τB)1A∪B(x) + 1A(x) .
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Definition (Dirichlet form)

For any g , h ∈ L2(µ)

E(g , h) := µ(g .Lh)

= (1/2)

∫∫
µ(dx)L(x ,dy)(h(x)− h(y))(g(x)− g(y)) .

Proposition (Variational principle)

cap(A,B) = inf
h∈HA,B

E(h)

where HA,B = {h : X→ [0, 1], h|A = 1, h|B = 0} and E(h) = E(h, h).

Proposition

For all x ∈ X, A ⊂ X\{x},

Px{τA ≤ τx} = cap(x ,A)/µ(x) .
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Technical results (Bovier et al., 2004)

1/ Dirichlet problem (w. boundary cdts on two sets A and B):

(L − λI)hλA,B(x) = 0 , x 6∈ A ∪ B, hλA,B(x) = 1A(x) , x ∈ A ∪ B

2/ λ0 smallest eigenvalue such that

(L − λI)f = 0 , x 6∈ M, fM 6= 0

3/ Characterization of Sp(L)

λ ∈ Sp(L) and λ < λ0 ⇐⇒ detM(λ) = 0

{M(λ)}x,y = Lhλx,M\{x}(y), for all (x , y) ∈M2

4/ There exists M̃, a perturbation of M(λ) (expending around
ζλx,y = hx,y − hλx,y ),

M̃x,y = E(hx , hy )/‖hx,M\{x}‖2‖hy,M\{y}‖2

for all λ ∈ Sp(L), λ < λ0, there is σ ∈ M̃ s.t.

λ = σ(1 +O(ρ)) .
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Application to the protein dynamic setup

Assumptions

I Metastability, {Xt , t > 0} is ρ-metastable wrt M = {U,F}.
I Non-degeneracy, there exists δ < 1 s.t. δ := µ(A(U))/µ(A(F )) where for

any M1 ∈M, A(M1) is the attractor of M1,
A(M1) := {x ∈ X, Px (τM1 ≤ τx) ≥ Px

(
τM\M1

≤ τx
)
}.

Proposition

Under those assumptions, we have:

λ1 = 0, λ2 =
µ(U)

µ(A(U))
L(U,A(F ))

(
1 +O(ρ2 + δ)

)
and the first two right eigenvectors satisfy:

φ1 = 1, φ2(y) =
Py{τU ≤ τF}1y 6∈{U,F} + 1y∈U

µ(A(F ))
+O(ρ2 + δ) .
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Locally informed Markov chains
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Design of MCMC sampler

Suppose that n π-reversible Markov kernels are available:

P1,P2, . . . ,Pn .

We know that for any I ⊆ {1, . . . ,N} and any probability ω on I ,

Pω :=
∑
k∈I

ωkPk , .

is also π-reversible.

Question
Is there some choice of (ω, I ) “better” than other?

Examples

I Gibbs: full cdt’s of π are samplable and Pi (xi , · ) ≡ π( · | xi )
I Metropolis-within-Gibbs
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Related works

I Geometric ergodicity and hybrid Markov chains (Roberts and Rosenthal,
1997)

I Adaptive Gibbs sampler and related methods (Latuszyńky et al., 2013)

I On random-and systematic-scan samplers (Andrieu, 2016).

I etc.

The following question has been unexplored: does it make sense to consider a
state-dependant probability on I , ie

Pω(x , · ) =
∑
k∈I

ωk(x)Pk(x , · ) ?
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Illustration with d = 2

Consider the following distribution on X = [0 , 1]× [−100 , 100]:

π(x1, x2) ∝ x100
1 (1 + x1 sin(x2/2)) .

x
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x 2
π
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Assume a MwG sampler is used to sample from π:

Pω = ωP1 + (1− ω)P2 ,

i.e. P moves X1 through P1 with proba. ω (resp. for X2).

Question
How to choose ω?
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Illustration with d = 2: convergence time to π

Let πk the distribution of Xk i.e. πk = µPk
ω where X0 ∼ µ := unif(X).

Define the total variation distance

TVk = ‖π − πk‖ = (1/2)

∫
X

|π(x)− πk(x)|dx .
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Locally informed MCMC

Proposition

If ω is state-dependent, Pω is in, general1, not π-invariant.

Let {X̄k , k ∈ N}, whose transition X̄k → X̄k+1 is given by

I draw I ∼ ω(X̄k),

I draw X̃ ∼ PI (X̄k , · ),

I set X̄k+1 w.p. 1 ∧ ωI (X̃ )/ωI (X̄k) and X̄k+1 = X̄k otherwise,

Proposition

The transition kernel

P̄ω(x , · ) =
n∑

i=1

ωi (x)Pi (x , · ){1 ∧ ωI (·)/ωI (x)}

is π-invariant.

1it is iff Eπ{
∑

k∈I ωk (x)Pk (x,A)} = π(A), for all A ∈ X
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Illustration with d = 2: convergence time to π

Let πk the distribution of Xk i.e. πk = µPk
ω where X0 ∼ µ := unif(X).
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with the local weight function set as

ω(x) :=
√

1− x1 .
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Some “poor” asymptotic properties of P̄ (1/2)

Proposition

Let:

I P1,P2, . . . be absolutely continuous kernels,

I ωloc be state-independent and ωunif be state-dependent proba. on
{1, . . . n}

I f ∈ L2(π) satisfying
∑

i |cov(f (X0), f (Xi ))| <∞
Then,

v(f ,Pωunif ) ≤ v(f ,Pωloc ) ,

where v(f ,P) = limn→∞(1/n)var{
∑n

k=1 f (Xk)}, X0 ∼ π and Xk+1 ∼ P(Xk , ·).
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Some “poor” asymptotic properties of P̄ (2/2)

Let X = {1, 2, 3} and consider:

I πε = [(1− ε)/2 (1− ε)/2 ε]

I {ωunif (x)}j ∝ 1 and {ωloc(x)}j ∝ π(j)1x 6=j

Proposition

If ε < 1/3, the spectral gap γ of the two kernels satisfy:

γ(Ploc , ε) =
1− 2p

1− p
and γ(Punif , ε) = ε

3− 5ε

1− ε2
.

Corollary

The speed to convergence for ε� 1 is contrasting for the two methods:

sup
µ∈M1(X)

‖µPn − π‖ ≈

{
Cen log ε/1−ε for P = Punif

Ce−nε+o(ε2) for P = Ploc
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A “positive” limit example
Consider the distribution πε on the hypercube X = {1, . . . , n}d s.t.

πε(X ) = ε+ (1− ε)1X∈F ,

where F is a path on the hypercube edges:

Proposition

Define τloc (resp. τunif ) the coupling time of Ploc (resp. Punif ), then when ε = 0,

Ex1 (τloc) ≤ (d/2)Ex1 (τunif ) , x1 = 1 .
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Study of limiting examples i.e. ε→ 0
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Figure: Left: empirical, d = 7, p = 10−3 – Right: theoretical, d = 2, p = 10−1.

+ many other examples in Maire and Vankerkhoven (2018, arXiv) showing the
same convergence patterns for “filamentary distributions”.

Conjecture

In similar scenarios, Ploc converges initially (much) faster than Punif before
reaching a very slow asymptotic rate.
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Metastable behaviour of Ploc

If x ∈ F , Ploc(x , F̄)� 1 and x 6∈ F , Ploc(x ,F)� 1.

Definition (Poincaré inequality)

P satisfies a Poincarré inequality with constant κ if:

κvarπ(f ) ≤ E(f ) .

Proposition (Schlichting and Slowik (2017))

For a ρ-metastable, π-reversible Markov chain on a discrete state space, with
M =M1,M2, the optimal Poincarré constant is

κ∗ =
cap(M1,M2)

π(A(M1))π(A(M2))
(1 +O(ρ)) .

Corollary

If X is discrete, π-reversible and ρ-metastable Markov chain, the Markov kernel
P contracts L0

2(π) such that:

‖Pk f ‖2 ≤ e−2k/κ‖f ‖2 .
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Continue to seek...
The current framework to analyse metastability is not adequate:

I it would tell us only how ”bad” our locally informed chain is

I most of the theory is concerned with discrete state space

I potential wells are supposed

⇒ For locally informed MCMC, the metastability arises from the reversible
dynamic of P and is not a by-product of a multimodale stationary distribution.

Research alternatives:

I Decompose the L1 distance, say supp(µ) = F :

‖µP̄k − π‖ ≤ ‖µP̄k
red − π|F‖+ ‖π − π|F‖+ ‖µP̄k

red − µP̄k‖

where P̄k
red is the reducible version of P̄. This would lead to:

‖µP̄k − π‖ ≤ Ce−t/τ + 2ε+ ‖µP̄k
red − µP̄k‖, ε = π(F) .

I bounding the last term from application of the Markov perturbation theory
(Johndrow and Mattingly, 2018, Medina-Aguayo et al., 2018)
under unif. ergodicity in V -norm of P̄ and drift cdt of P̄ (with same
function V ):

‖µP̄k
red − µP̄k‖ ≤ 33C(L + 1)κ

1− α logR/R
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Concluding observations

A rigorous characterization of metastability in dynamical systems allows one to
use the rich literature on this subject.

I ρ-metastability, potential theoretic approach: variational approach ⇒
bounds for ρ

I most results limited to cases where X is a finite state space

I improve the precision in the clustering algorithm to folding/unfolding in
protein dynamics.

For the analysis of MCMC algorithms:

I ρ-metastability may be used to show how inefficient a Markov chain is
(Poincaré inequality)

I some proof technics based on splitting the dynamics according the
metastable sets may be useful (Slowik and Schlichting)

I perturbation theory of V -ergodic Markov chains (Medina-Aguayo et al.,
Rudolf et al., Johndrow et al., etc) seems more readily applicable
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