Hybrid Monte Carlo methods for sampling probability measures on submanifolds

T. Lelièvre
CERMICS - Ecole des Ponts ParisTech \& Matherials team - INRIA Joint work with M. Rousset and G. Stoltz

Established by the European Commission

BIRS-CMO workshop, November 2018

Objective

Let us be given a submanifold of \mathbb{R}^{d} :

$$
\mathcal{M}=\left\{q \in \mathbb{R}^{d}, \xi(q)=0\right\}
$$

where $\xi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is a given smooth function (with $m<d$) such that

$$
G(q)=[\nabla \xi(q)]^{T} \nabla \xi(q) \in \mathbb{R}^{m \times m}
$$

is an invertible matrix for all q in a neighborhood of \mathcal{M}. The objective is to sample the probability measure:

$$
\nu(d q)=Z_{\nu}^{-1} \mathrm{e}^{-V(q)} \sigma_{\mathcal{M}}(d q), \quad Z_{\nu}=\int_{\mathcal{M}} \mathrm{e}^{-V(q)} \sigma_{\mathcal{M}}(d q)<\infty
$$

where $\sigma_{\mathcal{M}}(d q)$ is the Riemannian measure on \mathcal{M} induced by the scalar product $\langle\cdot, \cdot\rangle$ defined in the ambient space \mathbb{R}^{d}.

Motivation

Such problems arise in many contexts: constrained mechanical systems with noise, statistics, ...

One example is computational statistical physics: free energy calculations. If $X \sim \rho$ where $\rho(d q)=Z^{-1} \mathrm{e}^{-V(q)} d q$, then $\xi(X) \sim \xi_{\#} \rho$. Let us define $A: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by:

$$
\mathrm{e}^{-A(z)} d z=\xi_{\#} \rho(d z)
$$

Then, using the co-area formula,

$$
\nabla A(0)=\mathbb{E}_{\rho}(f(X) \mid \xi(X)=0)=\int_{\mathcal{M}} f(q) \tilde{\nu}(d q)
$$

where $f=G^{-1} \nabla \xi \cdot \nabla V-\operatorname{div}\left(G^{-1} \nabla \xi\right)$ and

$$
\tilde{\nu}(d q)=Z_{\tilde{\nu}}^{-1} \mathrm{e}^{-\tilde{V}(q)} \sigma_{\mathcal{M}}(d q)
$$

where $\tilde{V}(q)=V(q)+\frac{\ln \operatorname{det} G(q)}{2}$.
\longrightarrow Thermodynamic integration.

Plan

The constrained overdamped Langevin dynamics

The constrained Langevin dynamics

The reverse projection check

Numerical experiments

Step 1: the overdamped Langevin dynamics $(1 / 3)$

The constrained overdamped Langevin dynamics (W_{t} is a d-dimensional Brownian motion):

$$
\left\{\begin{array}{l}
d q_{t}=-\nabla V\left(q_{t}\right) d t+\sqrt{2} d W_{t}+\nabla \xi\left(q_{t}\right) d \lambda_{t} \\
d \lambda_{t} \in \mathbb{R}^{m} \text { such that } \xi\left(q_{t}\right)=0
\end{array}\right.
$$

is ergodic with respect to ν. It can indeed be rewritten as:

$$
d q_{t}=\Pi\left(q_{t}\right) \circ\left(-\nabla V\left(q_{t}\right) d t+\sqrt{2} d W_{t}\right)
$$

where \circ denotes the Stratonovitch product and

$$
\Pi(q)=\operatorname{Id}-\nabla \xi(q) G^{-1}(q)[\nabla \xi(q)]^{T}
$$

is the orthogonal projector from \mathbb{R}^{d} to $T_{q} \mathcal{M}$. One can then use the divergence theorem on manifolds to prove that its unique invariant measure is ν [Ciccotti, TL , Vanden-Einjden, 2008].

Step 1: the overdamped Langevin dynamics $(2 / 3)$

Discretization of the constrained overdamped Langevin dynamics:

$$
\left\{\begin{array}{l}
q^{n+1}=q^{n}-\nabla V\left(q^{n}\right) \Delta t+\sqrt{2 \Delta t} G_{n}+\nabla \xi\left(q_{n}\right) \lambda^{n} \\
\lambda^{n} \in \mathbb{R}^{m} \text { such that } \xi\left(q^{n+1}\right)=0
\end{array}\right.
$$

where $G_{n} \sim \mathcal{N}(0, I d)$.
Remark: By choosing $V=\tilde{V}$, an approximation of $\nabla A(0)$ is given by the average of the Lagrange multipliers:

$$
\lim _{T \rightarrow \infty} \lim _{\Delta t \rightarrow 0} \frac{1}{T} \sum_{n=1}^{T / \Delta t} \lambda^{n}=\nabla A(0)
$$

Step 1: the overdamped Langevin dynamics (3/3)

Time discretization implies a bias, which is of order Δt. Let $\nu_{\Delta t}$ be the invariant measure for $\left(q^{n}\right)_{n \geq 0}$, then [Faou, $\left.\mathrm{TL}, 2010\right]$: for all smooth function $\varphi: \mathcal{M} \rightarrow \mathbb{R}, \exists C$, for small Δt,

$$
\left|\int_{\mathcal{M}} \varphi d \nu_{\Delta t}-\int_{\mathcal{M}} \varphi d \nu\right| \leq C \Delta t
$$

The proof is based on expansions à la Talay-Tubaro.
How to eliminate the bias?
Metropolis-Hastings is not easy to apply since the probability to go from q^{n} to q^{n+1} does not have a simple analytical expression.

Idea: lift the problem to phase space in order to use the symmetry up to momentum reversal of the constrained Hamiltonian dynamics.

Step 2: the Langevin dynamics $(1 / 8)$

Extended measure in phase space:

$$
\mu(d q d p)=Z_{\mu}^{-1} \mathrm{e}^{-H(q, p)} \sigma_{T^{*} \mathcal{M}}(d q d p)
$$

where $H(q, p)=V(q)+\frac{|p|^{2}}{2}$ and $\sigma_{T^{*} \mathcal{M}}(d q d p)$ is the phase space Liouville measure on

$$
T^{*} \mathcal{M}=\left\{(q, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \xi(q)=0 \text { and }[\nabla \xi(q)]^{T} p=0\right\}
$$

The marginal of μ in q is ν. Indeed, the measure μ rewrites:

$$
\mu(d q d p)=\nu(d q) \kappa_{q}(d p)
$$

where

$$
\kappa_{q}(d p)=(2 \pi)^{\frac{m-d}{2}} \mathrm{e}^{-\frac{|p|^{2}}{2}} \sigma_{T_{q}^{*} \mathcal{M}}(d p)
$$

with $T_{q}^{*} \mathcal{M}=\left\{p \in \mathbb{R}^{d},[\nabla \xi(q)]^{T} p=0\right\} \subset \mathbb{R}^{d}$.
Remark: Here and in the following, we assume for simplicity that the mass tensor $M=I d$. It is easy to generalize the algorithm and the analysis to the case $M \neq \mathrm{Id}$.

Step 2: the Langevin dynamics (2/8)

The constrained Langevin dynamics ($\gamma>0$ is the friction parameter)

$$
\left\{\begin{array}{l}
d q_{t}=p_{t} d t \\
d p_{t}=-\nabla V\left(q_{t}\right) d t-\gamma p_{t} d t+\sqrt{2 \gamma} d W_{t}+\nabla \xi\left(q_{t}\right) d \lambda_{t} \\
\xi\left(q_{t}\right)=0
\end{array}\right.
$$

is ergodic with respect to μ. Notice that $\left[\nabla \xi\left(q_{t}\right)\right]^{T} p_{t}=0$. It can be seen as the composition (operator splitting) of two dynamics:

- the constrained Hamiltonian dynamics:

$$
\left\{\begin{array}{l}
d q_{t}=p_{t} d t \\
d p_{t}=-\nabla V\left(q_{t}\right) d t+\nabla \xi\left(q_{t}\right) d \lambda_{t} \\
\xi\left(q_{t}\right)=0
\end{array}\right.
$$

- the Ornstein-Uhlenbeck process on momenta:

$$
\left\{\begin{array}{l}
d q_{t}=0 \\
d p_{t}=-\gamma p_{t} d t+\sqrt{2 \gamma} d W_{t}+\nabla \xi\left(q_{t}\right) d \lambda_{t} \\
{\left[\nabla \xi\left(q_{t}\right)\right]^{T} p_{t}=0}
\end{array}\right.
$$

Step 2: the Langevin dynamics $(3 / 8)$

Discretization of the Ornstein-Uhlenbeck process on momenta: midpoint Euler leaves the measure $\kappa_{q^{n}}$ and thus μ invariant:

$$
\left\{\begin{array}{l}
p^{n+1}=p^{n}-\frac{\Delta t}{2} \gamma\left(p^{n}+p^{n+1}\right)+\sqrt{2 \gamma \Delta t} G^{n}+\nabla \xi\left(q^{n}\right) \lambda^{n} \\
\nabla \xi\left(q^{n}\right)^{T} p^{n+1}=0
\end{array}\right.
$$

In the following, we denote one step of this dynamics by $\Psi_{\Delta t}^{O U}: T^{*} \mathcal{M} \rightarrow T^{*} \mathcal{M}:$

$$
\Psi_{\Delta t}^{O U}\left(q^{n}, p^{n}\right)=\left(q^{n}, p^{n+1}\right)
$$

Remark: The projection is always well defined, and easy to implement:

$$
p^{n+1}=\Pi^{*}\left(q^{n}\right)\left(\frac{(1-\Delta t \gamma / 2) p^{n}+\sqrt{2 \gamma \Delta t} G^{n}}{1+\Delta t \gamma / 2}\right)
$$

where

$$
\Pi^{*}(q)=\operatorname{Id}-\nabla \xi(q) G^{-1}(q)[\nabla \xi(q)]^{T}
$$

is the orthogonal projector from \mathbb{R}^{d} to $T_{q}^{*} \mathcal{M}$.

Step 2: the Langevin dynamics $(4 / 8)$

Discretization of the constrained Hamiltonian dynamics (RATTLE):

$$
\left\{\begin{array}{l}
p^{n+1 / 2}=p^{n}-\frac{\Delta t}{2} \nabla V\left(q^{n}\right)+\nabla \xi\left(q^{n}\right) \lambda^{n+1 / 2}, \\
q^{n+1}=q^{n}+\Delta t p^{n+1 / 2}, \\
\xi\left(q^{n+1}\right)=0, \\
p^{n+1}=p^{n+1 / 2}-\frac{\Delta t}{2} \nabla V\left(q^{n+1}\right)+\nabla \xi\left(q^{n+1}\right) \lambda^{n+1}, \\
{\left[\nabla \xi\left(q^{n+1}\right)\right]^{T} p^{n+1}=0,} \tag{p}
\end{array}\right.
$$

where $\lambda^{n+1 / 2} \in \mathbb{R}^{m}$ are the Lagrange multipliers associated with the position constraints $\left(C_{q}\right)$, and $\lambda^{n+1} \in \mathbb{R}^{m}$ are the Lagrange multipliers associated with the velocity constraints $\left(C_{p}\right)$.
In the following, we denote one step of the RATTLE dynamics by $\psi_{\Delta t}^{R A T T L E}: T^{*} \mathcal{M} \rightarrow T^{*} \mathcal{M}:$

$$
\Psi_{\Delta t}^{R A T T L E}\left(q^{n}, p^{n}\right)=\left(q^{n+1}, p^{n+1}\right)
$$

Step 2: the Langevin dynamics $(5 / 8)$

Discretization of the constrained Langevin dynamics (Strang splitting):

$$
\left\{\begin{aligned}
\left(q^{n}, p^{n+1 / 4}\right) & =\Psi_{\Delta t / 2}^{O U}\left(q^{n}, p^{n}\right) \\
\left(q^{n+1}, p^{n+3 / 4}\right) & =\Psi_{\Delta t}^{R A T L L E}\left(q^{n}, p^{n+1 / 4}\right) \\
\left(q^{n+1}, p^{n+1}\right) & =\Psi_{\Delta t / 2}^{O U}\left(q^{n+1}, p^{n+3 / 4}\right)
\end{aligned}\right.
$$

But there is still a bias due to time discretization...

Step 2: the Langevin dynamics $(6 / 8)$

Let us denote by

$$
S(q, p)=(q,-p)
$$

the momentum reversal map and

$$
\Psi_{\Delta t}(q, p)=S\left(\Psi_{\Delta t}^{R A T T L E}(q, p)\right)
$$

Fundamental properties of RATTLE: for Δt small enough,

- $\Psi_{\Delta t}\left(\Psi_{\Delta t}(q, p)\right)=(q, p)$
- Ψ_{Δ} is a symplectic map, which thus preserves $\sigma_{T^{*} \mathcal{M}}$
[Hairer, Lubich, Wanner, 2006] [Leimkuhler, Reich, 2004].
One can thus add a Metropolis Hastings rejection step to get unbiased samples: if $\left(q^{\prime}, p^{\prime}\right)=\Psi_{\Delta t}(q, p)$, the MH ratio writes:

$$
\frac{\delta_{\Psi_{\Delta t}^{\mathrm{rev}}\left(q^{\prime}, p^{\prime}\right)}(d q d p) \mathrm{e}^{-H\left(q^{\prime}, p^{\prime}\right)} \sigma_{T^{*} \mathcal{M}}\left(d q^{\prime} d p^{\prime}\right)}{\delta_{\Psi_{\Delta t}^{\mathrm{rev}}(q, p)}\left(d q^{\prime} d p^{\prime}\right) \mathrm{e}^{-H(q, p)} \sigma_{T^{*} \mathcal{M}}(d q d p)}=\mathrm{e}^{-H\left(q^{\prime}, p^{\prime}\right)+H(q, p)}
$$

Step 2: the Langevin dynamics $(7 / 8)$

Constrained Generalized Hybrid Monte Carlo algorithm (ITL, Rousset,
Stoltz 2012], constrained version of [Horowitz 1991]):

$$
\left\{\begin{array}{l}
\left(q^{n}, p^{n+1 / 4}\right)=\Psi_{\Delta t / 2}^{O U}\left(q^{n}, p^{n}\right) \\
\left(\tilde{q}^{n+1}, \tilde{p}^{n+3 / 4}\right)=\Psi_{\Delta t}\left(q^{n}, p^{n+1 / 4}\right) \\
\text { If } U^{n} \leq \mathrm{e}^{-H\left(\tilde{q}^{n+1}, \tilde{p}^{n+3 / 4}\right)+H\left(q^{n}, p^{n+1 / 4}\right)} \\
\quad \text { accept the proposal: }\left(q^{n+1}, p^{n+3 / 4}\right)=\left(\tilde{q}^{n+1}, \tilde{p}^{n+3 / 4}\right) \\
\quad \text { else reject the proposal: }\left(q^{n+1}, p^{n+3 / 4}\right)=\left(q^{n}, p^{n+1 / 4}\right) \\
\tilde{p}^{n+1}=-p^{n+3 / 4} \\
\left(q^{n+1}, p^{n+1}\right)=\Psi_{\Delta t / 2}^{O U}\left(q^{n+1}, \tilde{p}^{n+1}\right)
\end{array}\right.
$$

where $U^{n} \sim \mathcal{U}(0,1)$.
Remark: If $\Delta t \gamma / 4=1$, then $p^{n+1 / 4}=\Pi^{*}\left(q^{n}\right)\left(G^{n}\right) \sim \kappa_{q^{n}}$. One thus obtains a constrained HMC algorithm, consistent with the constrained overdamped Langevin discretized with a timestep $\Delta t^{2} / 2$ (MALA).

Step 2: the Langevin dynamics $(8 / 8)$

Problem: RATTLE is only well defined and reversible for locally small timesteps. Three possible difficulties:

- $\Psi_{\Delta t}(q, p)$ may not be defined;
- If $\Psi_{\Delta t}(q, p)$ is well defined, $\Psi_{\Delta t}\left(\Psi_{\Delta t}(q, p)\right)$ may not be defined;
- If $\Psi_{\Delta t}(q, p)$ and $\Psi_{\Delta t}\left(\Psi_{\Delta t}(q, p)\right)$ are well defined, one may have $\Psi_{\Delta t}\left(\Psi_{\Delta t}(q, p)\right) \neq(q, p)$.

Step 3: the reverse projection check $(1 / 8)$

In order to introduce the ensemble where RATTLE is well defined, let us rewrite the RATTLE dynamics as follows:

$$
\left\{\begin{array}{l}
q^{n+1}=q^{n}+\Delta t\left[p^{n}-\frac{\Delta t}{2} \nabla V\left(q^{n}\right)\right]+\Delta t \nabla \xi\left(q^{n}\right) \lambda^{n+1 / 2}, \\
p^{n+1}=\Pi^{*}\left(q^{n}\right)\left(p^{n}-\frac{\Delta t}{2}\left(\nabla V\left(q^{n}\right)+\nabla V\left(q^{n+1}\right)\right)+\nabla \xi\left(q^{n}\right) \lambda^{n+1 / 2}\right)
\end{array}\right.
$$

where

$$
\Delta t \lambda^{n+1 / 2}=\Lambda\left(q^{n}, q^{n}+\Delta t\left[p^{n}-\frac{\Delta t}{2} \nabla V\left(q^{n}\right)\right]\right)
$$

The function $\Lambda: \mathcal{D} \rightarrow \mathbb{R}^{m}$, where \mathcal{D} is an open set of $\mathcal{M} \times \mathbb{R}^{d}$ is the Lagrange multiplier function which satisfies:

$$
\forall(q, \tilde{q}) \in \mathcal{D}, \tilde{q}+\nabla \xi(q) \wedge(q, \tilde{q}) \in \mathcal{M}
$$

We will discuss later how to rigrously build such a Lagrange multiplier function.

Step 3: the reverse projection check $(2 / 8)$

The function Λ is only defined on \mathcal{D} and thus $\Psi_{\Delta t}^{\text {RATTLE }}$ is only defined on the open set:

$$
A=\left\{(q, p) \in T^{*} \mathcal{M}, \quad\left(q, q+\Delta t M^{-1}\left[p-\frac{\Delta t}{2} \nabla V(q)\right]\right) \in \mathcal{D}\right\}
$$

and likewise, $\Psi_{\Delta t}=S \circ \Psi_{\Delta t}^{R A T T L E}$ is defined on A.
Proposition ([TL, Rousset, Stoltz 2018])
If \wedge is C^{1}, then $\Psi_{\Delta t}: A \rightarrow T^{*} \mathcal{M}$ is a C^{1} local diffeomorphism, locally preserving the phase-space measure $\sigma_{T^{*} \mathcal{M}}(d q d p)$.

Step 3: the reverse projection check (3/8)

Let us now introduce the RATTLE dynamics with momentum reversal and reverse projection check: for any $(q, p) \in T^{*} \mathcal{M}$,

$$
\Psi_{\Delta t}^{\mathrm{rev}}(q, p)=\Psi_{\Delta t}(q, p) 1_{\{(q, p) \in B\}}+(q, p) 1_{\{(q, p) \notin B\}}
$$

where the set $B \subset A \subset T^{*} \mathcal{M}$ is defined by

$$
B=\left\{(q, p) \in A, \Psi_{\Delta t}(q, p) \in A \text { and }\left(\Psi_{\Delta t}\left(\Psi_{\Delta t}\right)(q, p)\right)=(q, p)\right\}
$$

Proposition ([TL, Rousset, Stoltz 2018])

Let us assume that Λ is C^{1} and satisfies the non-tangential condition: $\forall(q, \tilde{q}) \in \mathcal{D}$,

$$
[\nabla \xi(\tilde{q}+\nabla \xi(q) \wedge(q, \tilde{q}))]^{T} \nabla \xi(q) \in \mathbb{R}^{m \times m} \text { is invertible. }
$$

Then, the set B is the union of path connected components of the open set $A \cap \Psi_{\Delta t}^{-1}(A)$. It is thus an open set of $T^{*} \mathcal{M}$. Moreover, $\Psi_{\Delta t}^{\mathrm{rev}}: T^{*} \mathcal{M} \rightarrow T^{*} \mathcal{M}$ is globally well defined, preserves globally the measure $\sigma_{T^{*} \mathcal{M}}(d q d p)$ and satisfies $\Psi_{\Delta t}^{\mathrm{rev}} \circ \Psi_{\Delta t}^{\mathrm{rev}}=\mathrm{Id}$.

Step 3: the reverse projection check $(4 / 8)$

Practically, $\Psi_{\Delta t}^{\mathrm{rev}}(q, p)$ is obtained from $(q, p) \in T^{*} \mathcal{M}$ by the following procedure:
(1) check if (q, p) is in A; if not return (q, p);
(2) when $(q, p) \in A$, compute the configuration $\left(q^{1}, p^{1}\right)$ obtained by one step of the RATTLE scheme;
(3) check if $\left(q^{1},-p^{1}\right)$ is in A; if not, return (q, p);
(4) compute the configuration $\left(q^{2},-p^{2}\right)$ obtained by one step of the RATTLE scheme starting from $\left(q^{1},-p^{1}\right)$;
(5) if $\left(q^{2}, p^{2}\right)=(q, p)$, return $\left(q^{1},-p^{1}\right)$; otherwise return (q, p).

The steps (3)-(4)-(5) correspond to the reverse projection check
[Goodman, Holmes-Cerfon, Zappa, 2017].

Step 3: the reverse projection check $(5 / 8)$

The reverse projection check is useful!

Here, $V=0$ and the projection is defined as the closest point to \mathcal{M}. Notice that $q^{\prime \prime} \neq q$!

Step 3: the reverse projection check $(6 / 8)$

Assume for simplicity that $\exists \alpha>0,\left\{q \in \mathbb{R}^{d},\|\xi(q)\| \leq \alpha\right\}$ is compact. How to build admissible Lagrange multiplier functions?

- Theoretically, one can use the implicit function theorem to build a function $\Lambda(q, \tilde{q})$ for \tilde{q} in a neighborhood of q.
- Numerically, one can use the Newton algorithm to extend this local construction and compute the Lagrange multipliers for \tilde{q} far from q : perform a given number of iterations of the Newton algorithm; the set \mathcal{D} is defined as the configurations for which convergence is obtained.
One can check that B is non empty with these Lagrange multiplier functions.

Both constructions rely on the existence of a Lagrange multiplier function $\Lambda: \mathcal{D}_{\text {imp }} \rightarrow \mathbb{R}^{m}$ where $\mathcal{D}_{\text {imp }}$ is an open subset of $\mathcal{M} \times \mathbb{R}^{d}$ which contains $\left\{(q, \tilde{q}) \in \mathcal{M} \times \mathcal{M},[\nabla \xi(q)]^{T} \nabla \xi(\tilde{q})\right.$ is invertible $\}$.

Step 3: the reverse projection check $(7 / 8)$

The constrained GHMC algorithm writes:

$$
\left\{\begin{array}{l}
\left(q^{n}, p^{n+1 / 4}\right)=\Psi_{\Delta t / 2}^{O U}\left(q^{n}, p^{n}\right) \\
\left(\tilde{q}^{n+1}, \tilde{p}^{n+3 / 4}\right)=\Psi_{\Delta t}^{r e v}\left(q^{n}, p^{n+1 / 4}\right) \\
\text { If } U^{n} \leq \mathrm{e}^{-H\left(\tilde{q}^{n+1}, p^{n+3 / 4}\right)+H\left(q^{n}, p^{n+1 / 4}\right)} \\
\quad \text { accept the proposal: }\left(q^{n+1}, p^{n+3 / 4}\right)=\left(\tilde{q}^{n+1}, \tilde{p}^{n+3 / 4}\right) \\
\quad \text { else reject the proposal: }\left(q^{n+1}, p^{n+3 / 4}\right)=\left(q^{n}, p^{n+1 / 4}\right) \\
\tilde{p}^{n+1}=-p^{n+3 / 4} \\
\left(q^{n+1}, p^{n+1}\right)=\Psi_{\Delta t / 2}^{O U}\left(q^{n+1}, \tilde{p}^{n+1}\right)
\end{array}\right.
$$

where $U^{n} \sim \mathcal{U}(0,1)$.

Proposition ([TL, Rousset, Stoltz 2018])

The Markov chain $\left(q^{n}, p^{n}\right)_{n \geq 0}$ admits μ as an invariant measure.
To prove ergodicity, it remains to check irreducibility [Hartmann, 2008].

Step 3: the reverse projection check $(8 / 8)$

Remarks:

- In $\Psi_{\Delta t}^{r e v}$, one can use any potential V ! Choosing the potential V of the target measure is good to increase the acceptance probability.
- If $\Delta t \gamma / 4=1$, one obtains a HMC (or MALA) algorithm. If $\Delta t \gamma / 4=1$ and $V=0$ in $\Psi_{\Delta t}^{\text {rev }}$, this is a constrained random walk MH algorithm [Goodman, Holmes-Cerfon, Zappa, 2017].
- In pratice, one can use K steps of RATTLE within $\Psi^{\text {rev }}$ to get less correlated samples. [Bou-Rabee, Sanz Serra]
- If $\Psi_{\Delta t}^{\text {rev }}\left(q^{n}, p^{n+1 / 4}\right)=\Psi_{\Delta t}\left(q^{n}, p^{n+1 / 4}\right)$ (reverse projection check OK), one obtains a consistent discretization of the constrained Langevin dynamics.
- Similar ideas can be used to enforce inequality constraints.
- It may be interesting for numerical purposes to consider non identity mass matrices.

Numerical experiments $(1 / 3)$

Let \mathcal{M} be the three-dimensional torus $\mathcal{M}=\left\{q \in \mathbb{R}^{3}, \xi(q)=0\right\}$ where

$$
\xi(q)=\left(R-\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2}-r^{2}
$$

with $0<r<R$. Let us consider for $\nu=\sigma_{T^{*} \mathcal{M}}$ the uniform measure on \mathcal{M}.

"partial reverse check" $=$ do not check $\Psi_{\Delta t} \circ \Psi_{\Delta t}=\mathrm{Id} \Rightarrow$ BIAS!

Numerical experiments $(2 / 3)$

Let us now consider a double well case: $\nu=\mathrm{e}^{-V} \sigma_{T^{*} \mathcal{M}}$ where $V(x, y, z)=k\left(x^{2}-R^{2}\right)^{2}$.

Typical trajectories for the GHMC dynamics (left $\Delta t=0.05$, right $\Delta t=3$):

Numerical experiments (3/3)

Analysis of the efficiency (left mean residence duration, right: non-reversibility rejection rate)

The optimal timestep is of the order of 0.7 . For such timesteps, the rejections due to the non reversibility condition
$\left(q^{n}, p^{n}\right) \neq \Psi_{\Delta t} \circ \Psi_{\Delta t}\left(q^{n}, p^{n}\right)$ are of the order of $15-20 \%$, the total rejection rate being about 90%.
\rightarrow reverse projection check is useful to get efficient algorithms.

References

- G. Ciccotti, TL and E. Vanden-Eijnden, Projection of diffusions on submanifolds: Application to mean force computation, CPAM 61(3), 2008.
- E. Faou and TL, Conservative stochastic differential equations: Mathematical and numerical analysis, Math. Comp. 78, 2009.
- A.M. Horowitz, A generalized guided Monte-Carlo algorithm. Phys. Lett.B 268, 1991.
- TL, M. Rousset and G. Stoltz, Langevin dynamics with constraints and computation of free energy differences, Math. Comp. 81, 2012.
- TL, M. Rousset and G. Stoltz, Hybrid Monte Carlo methods for sampling probability measures on submanifolds, https://arxiv.org/abs/1807.02356.
- E. Zappa, M. Holmes-Cerfon and J. Goodman, Monte Carlo on manifolds: sampling densities and integrating functions, https://arxiv.org/abs/1702.08446.

