Hybrid Monte Carlo methods for sampling probability measures on submanifolds

T. Lelièvre

$\label{eq:cermics-Ecole} \ensuremath{\mathsf{CERMICS}}\xspace - \ensuremath{\mathsf{Ecole}}\xspace \ensuremath{\mathsf{CERMICS}}\xspace - \ensuremath{\mathsf{INRIA}}\xspace \\ \ensuremath{\mathsf{Joint work with M. Rousset and G. Stoltz}\xspace \\ \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Morisle}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{CERMICS}}\xspace \ensuremath{\mathsf{CERMICS}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Sec}}\xspace \ensuremath{\mathsf{Morisle}}\xspace \ensuremath{\mathsf{Sec}}\xspace \en$

BIRS-CMO workshop, November 2018

Objective

Let us be given a submanifold of \mathbb{R}^d :

$$\mathcal{M}=\left\{ q\in \mathbb{R}^{d},\, \xi(q)=0
ight\}$$

where $\xi : \mathbb{R}^d \to \mathbb{R}^m$ is a given smooth function (with m < d) such that

$$G(q) = [\nabla \xi(q)]^T \nabla \xi(q) \in \mathbb{R}^{m \times m}$$

is an invertible matrix for all q in a neighborhood of M. The objective is to sample the probability measure:

$$u(dq) = Z_{\nu}^{-1} \operatorname{e}^{-V(q)} \sigma_{\mathcal{M}}(dq), \qquad Z_{\nu} = \int_{\mathcal{M}} \operatorname{e}^{-V(q)} \sigma_{\mathcal{M}}(dq) < \infty,$$

where $\sigma_{\mathcal{M}}(dq)$ is the Riemannian measure on \mathcal{M} induced by the scalar product $\langle \cdot, \cdot \rangle$ defined in the ambient space \mathbb{R}^d .

Motivation

Such problems arise in many contexts: constrained mechanical systems with noise, statistics, ...

One example is computational statistical physics: free energy calculations. If $X \sim \rho$ where $\rho(dq) = Z^{-1}e^{-V(q)} dq$, then $\xi(X) \sim \xi_{\#}\rho$. Let us define $A : \mathbb{R}^m \to \mathbb{R}$ by:

$$e^{-A(z)}dz = \xi_{\#}\rho(dz).$$

Then, using the co-area formula,

$$abla A(0) = \mathbb{E}_
ho(f(X)|\xi(X)=0) = \int_\mathcal{M} f(q) ilde{
u}(dq)$$

where $f = G^{-1} \nabla \xi \cdot \nabla V - \operatorname{div}(G^{-1} \nabla \xi)$ and

$$\tilde{\nu}(dq) = Z_{\tilde{\nu}}^{-1} e^{-\tilde{V}(q)} \sigma_{\mathcal{M}}(dq)$$

where $\tilde{V}(q) = V(q) + \frac{\ln \det G(q)}{2}$. \longrightarrow Thermodynamic integration. The constrained overdamped Langevin dynamics

The constrained Langevin dynamics

The reverse projection check

Numerical experiments

Step 1: the overdamped Langevin dynamics (1/3)

The constrained overdamped Langevin dynamics (W_t is a d-dimensional Brownian motion):

$$\left\{ egin{array}{l} dq_t = -
abla V(q_t)\,dt + \sqrt{2}dW_t +
abla \xi(q_t)d\lambda_t \ d\lambda_t \in \mathbb{R}^m ext{ such that } \xi(q_t) = 0 \end{array}
ight.$$

is ergodic with respect to ν . It can indeed be rewritten as:

$$dq_t = \Pi(q_t) \circ (-\nabla V(q_t) dt + \sqrt{2} dW_t)$$

where \circ denotes the Stratonovitch product and

$$\Pi(q) = \mathrm{Id} - \nabla \xi(q) G^{-1}(q) [\nabla \xi(q)]^{T}$$

is the orthogonal projector from \mathbb{R}^d to $T_q\mathcal{M}$. One can then use the divergence theorem on manifolds to prove that its unique invariant measure is ν [Ciccotti, TL, Vanden-Einjden, 2008]. Discretization of the constrained overdamped Langevin dynamics:

$$\begin{cases} q^{n+1} = q^n - \nabla V(q^n) \Delta t + \sqrt{2\Delta t} G_n + \nabla \xi(q_n) \lambda^n \\ \lambda^n \in \mathbb{R}^m \text{ such that } \xi(q^{n+1}) = 0 \end{cases}$$

where
$$G_n \sim \mathcal{N}(0, \mathrm{Id})$$
.

Remark: By choosing $V = \tilde{V}$, an approximation of $\nabla A(0)$ is given by the average of the Lagrange multipliers:

$$\lim_{T\to\infty}\lim_{\Delta t\to 0}\frac{1}{T}\sum_{n=1}^{T/\Delta t}\lambda^n=\nabla A(0).$$

Step 1: the overdamped Langevin dynamics (3/3)

Time discretization implies a bias, which is of order Δt . Let $\nu_{\Delta t}$ be the invariant measure for $(q^n)_{n\geq 0}$, then [Faou, TL, 2010]: for all smooth function $\varphi: \mathcal{M} \to \mathbb{R}, \exists C$, for small Δt ,

$$\left|\int_{\mathcal{M}}\varphi d\nu_{\Delta t}-\int_{\mathcal{M}}\varphi d\nu\right|\leq C\Delta t.$$

The proof is based on expansions à la Talay-Tubaro.

How to eliminate the bias?

Metropolis-Hastings is not easy to apply since the probability to go from q^n to q^{n+1} does not have a simple analytical expression.

Idea: lift the problem to phase space in order to use the symmetry up to momentum reversal of the constrained Hamiltonian dynamics.

Step 2: the Langevin dynamics (1/8) Extended measure in phase space:

$$\mu(dq\,dp) = Z_{\mu}^{-1} \mathrm{e}^{-H(q,p)}\,\sigma_{T^*\mathcal{M}}(dq\,dp)$$

where $H(q,p) = V(q) + \frac{|p|^2}{2}$ and $\sigma_{T^*\mathcal{M}}(dq dp)$ is the phase space Liouville measure on

$$\mathcal{T}^*\mathcal{M} = \Big\{ (q,p) \in \mathbb{R}^d imes \mathbb{R}^d, \, \xi(q) = 0 \, \, ext{and} \, \left[
abla \xi(q)
ight]^\mathcal{T} \, p = 0 \Big\}.$$

The marginal of μ in q is ν . Indeed, the measure μ rewrites:

$$\mu(dq\,dp) = \nu(dq)\,\kappa_q(dp)$$

where

$$\kappa_q(dp) = (2\pi)^{\frac{m-d}{2}} \mathrm{e}^{-rac{|p|^2}{2}} \sigma_{\mathcal{T}^*_q \mathcal{M}}(dp)$$

with $\mathcal{T}^*_q \mathcal{M} = \left\{ p \in \mathbb{R}^d, \left[
abla \xi(q)
ight]^T p = 0
ight\} \subset \mathbb{R}^d.$

Remark: Here and in the following, we assume for simplicity that the mass tensor M = Id. It is easy to generalize the algorithm and the analysis to the case $M \neq \text{Id}$.

Step 2: the Langevin dynamics (2/8)

The constrained Langevin dynamics ($\gamma > 0$ is the friction parameter)

$$\begin{cases} dq_t = p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma p_t dt + \sqrt{2\gamma} dW_t + \nabla \xi(q_t) d\lambda_t \\ \xi(q_t) = 0 \end{cases}$$

is ergodic with respect to μ . Notice that $[\nabla \xi(q_t)]^T p_t = 0$. It can be seen as the composition (operator splitting) of two dynamics:

• the constrained Hamiltonian dynamics:

$$\left\{ egin{array}{l} dq_t = p_t \, dt \ dp_t = -
abla V(q_t) \, dt +
abla \xi(q_t) \, d\lambda_t \ \xi(q_t) = 0. \end{array}
ight.$$

• the Ornstein-Uhlenbeck process on momenta:

$$\left\{egin{aligned} dq_t &= 0 \ dp_t &= -\gamma p_t \, dt + \sqrt{2\gamma} dW_t +
abla \xi(q_t) \, d\lambda_t \ [
abla \xi(q_t)]^{\mathsf{T}} p_t &= 0. \end{aligned}
ight.$$

Step 2: the Langevin dynamics (3/8)

Discretization of the Ornstein-Uhlenbeck process on momenta: midpoint Euler leaves the measure κ_{q^n} and thus μ invariant:

$$\begin{cases} p^{n+1} = p^n - \frac{\Delta t}{2} \gamma \left(p^n + p^{n+1} \right) + \sqrt{2\gamma \Delta t} \, G^n + \nabla \xi(q^n) \, \lambda^n, \\ \nabla \xi(q^n)^T p^{n+1} = 0, \end{cases}$$

In the following, we denote one step of this dynamics by $\Psi^{OU}_{\Delta t}$: $T^*\mathcal{M} \to T^*\mathcal{M}$:

$$\Psi_{\Delta t}^{OU}(q^n,p^n)=(q^n,p^{n+1}).$$

Remark: The projection is always well defined, and easy to implement:

$$p^{n+1} = \Pi^*(q^n) \left(\frac{(1 - \Delta t \gamma/2)p^n + \sqrt{2\gamma \Delta t} G^n}{1 + \Delta t \gamma/2} \right)$$

where

$$\Pi^*(q) = \mathrm{Id} - \nabla \xi(q) G^{-1}(q) [\nabla \xi(q)]^T$$

is the orthogonal projector from \mathbb{R}^d to $T_q^*\mathcal{M}$.

Step 2: the Langevin dynamics (4/8) Discretization of the constrained Hamiltonian dynamics (RATTLE):

$$\begin{cases} p^{n+1/2} = p^n - \frac{\Delta t}{2} \nabla V(q^n) + \nabla \xi(q^n) \lambda^{n+1/2}, \\ q^{n+1} = q^n + \Delta t \, p^{n+1/2}, \\ \xi(q^{n+1}) = 0, \\ p^{n+1} = p^{n+1/2} - \frac{\Delta t}{2} \nabla V(q^{n+1}) + \nabla \xi(q^{n+1}) \lambda^{n+1}, \\ \left[\nabla \xi(q^{n+1}) \right]^T p^{n+1} = 0, \\ \end{cases}$$
(C_q)

where $\lambda^{n+1/2} \in \mathbb{R}^m$ are the Lagrange multipliers associated with the position constraints (C_q) , and $\lambda^{n+1} \in \mathbb{R}^m$ are the Lagrange multipliers associated with the velocity constraints (C_p) .

In the following, we denote one step of the RATTLE dynamics by $\Psi_{\Delta t}^{RATTLE}$: $T^*\mathcal{M} \to T^*\mathcal{M}$:

$$\Psi_{\Delta t}^{RATTLE}(q^n,p^n)=(q^{n+1},p^{n+1}).$$

Discretization of the constrained Langevin dynamics (Strang splitting):

$$\begin{cases} (q^{n}, p^{n+1/4}) = \Psi_{\Delta t/2}^{OU}(q^{n}, p^{n}) \\ (q^{n+1}, p^{n+3/4}) = \Psi_{\Delta t}^{RATTLE}(q^{n}, p^{n+1/4}) \\ (q^{n+1}, p^{n+1}) = \Psi_{\Delta t/2}^{OU}(q^{n+1}, p^{n+3/4}) \end{cases}$$

But there is still a bias due to time discretization...

Step 2: the Langevin dynamics (6/8)

Let us denote by

$$S(q,p)=(q,-p)$$

the momentum reversal map and

$$\Psi_{\Delta t}(q,p) = S\left(\Psi_{\Delta t}^{RATTLE}(q,p)
ight).$$

Fundamental properties of RATTLE: for Δt small enough,

- $\Psi_{\Delta t}(\Psi_{\Delta t}(q,p)) = (q,p)$
- Ψ_{Δ} is a symplectic map, which thus preserves $\sigma_{\mathcal{T}^*\mathcal{M}}$

[Hairer, Lubich, Wanner, 2006] [Leimkuhler, Reich, 2004].

One can thus add a Metropolis Hastings rejection step to get unbiased samples: if $(q', p') = \Psi_{\Delta t}(q, p)$, the MH ratio writes:

$$\frac{\delta_{\Psi_{\Delta t}^{\mathrm{rev}}(q',p')}(dq\,dp)\,\mathrm{e}^{-H(q',p')}\,\sigma_{\mathcal{T}^*\mathcal{M}}(dq'\,dp')}{\delta_{\Psi_{\Delta t}^{\mathrm{rev}}(q,p)}(dq'\,dp')\,\mathrm{e}^{-H(q,p)}\,\sigma_{\mathcal{T}^*\mathcal{M}}(dq\,dp)}=\mathrm{e}^{-H(q',p')+H(q,p)}.$$

Step 2: the Langevin dynamics (7/8)

Constrained Generalized Hybrid Monte Carlo algorithm ([TL, Rousset,

Stoltz 2012], constrained version of [Horowitz 1991]):

$$\begin{cases} (q^{n}, p^{n+1/4}) = \Psi_{\Delta t/2}^{OU}(q^{n}, p^{n}) \\ (\tilde{q}^{n+1}, \tilde{p}^{n+3/4}) = \Psi_{\Delta t}(q^{n}, p^{n+1/4}) \\ \text{If } U^{n} \leq e^{-H(\tilde{q}^{n+1}, \tilde{p}^{n+3/4}) + H(q^{n}, p^{n+1/4})} \\ \text{accept the proposal: } (q^{n+1}, p^{n+3/4}) = (\tilde{q}^{n+1}, \tilde{p}^{n+3/4}) \\ \text{else reject the proposal: } (q^{n+1}, p^{n+3/4}) = (q^{n}, p^{n+1/4}). \\ \tilde{p}^{n+1} = -p^{n+3/4} \\ (q^{n+1}, p^{n+1}) = \Psi_{\Delta t/2}^{OU}(q^{n+1}, \tilde{p}^{n+1}) \end{cases}$$

where $U^n \sim \mathcal{U}(0,1)$.

Remark: If $\Delta t \gamma/4 = 1$, then $p^{n+1/4} = \Pi^*(q^n)(G^n) \sim \kappa_{q^n}$. One thus obtains a constrained HMC algorithm, consistent with the constrained overdamped Langevin discretized with a timestep $\Delta t^2/2$ (MALA).

Step 2: the Langevin dynamics (8/8)

Problem: RATTLE is only well defined and reversible for locally small timesteps. Three possible difficulties:

- $\Psi_{\Delta t}(q, p)$ may not be defined;
- If Ψ_{Δt}(q, p) is well defined, Ψ_{Δt} (Ψ_{Δt}(q, p)) may not be defined;
- If Ψ_{Δt}(q, p) and Ψ_{Δt} (Ψ_{Δt}(q, p)) are well defined, one may have Ψ_{Δt} (Ψ_{Δt}(q, p)) ≠ (q, p).

Step 3: the reverse projection check (1/8)

In order to introduce the ensemble where RATTLE is well defined, let us rewrite the RATTLE dynamics as follows:

$$\begin{cases} q^{n+1} = q^n + \Delta t \left[p^n - \frac{\Delta t}{2} \nabla V(q^n) \right] + \Delta t \nabla \xi(q^n) \lambda^{n+1/2}, \\ p^{n+1} = \Pi^*(q^n) \left(p^n - \frac{\Delta t}{2} \left(\nabla V(q^n) + \nabla V(q^{n+1}) \right) + \nabla \xi(q^n) \lambda^{n+1/2} \right) \end{cases}$$

where

$$\Delta t \lambda^{n+1/2} = \Lambda \left(q^n, q^n + \Delta t \left[p^n - rac{\Delta t}{2}
abla V(q^n)
ight]
ight).$$

The function $\Lambda : \mathcal{D} \to \mathbb{R}^m$, where \mathcal{D} is an open set of $\mathcal{M} \times \mathbb{R}^d$ is the Lagrange multiplier function which satisfies:

$$orall (q, \widetilde{q}) \in \mathcal{D}, \ \widetilde{q} +
abla \xi(q) \Lambda(q, \widetilde{q}) \in \mathcal{M}.$$

We will discuss later how to rigrously build such a Lagrange multiplier function.

The function Λ is only defined on \mathcal{D} and thus $\Psi_{\Delta t}^{RATTLE}$ is only defined on the open set:

$$A = \left\{ (q,p) \in \mathcal{T}^*\mathcal{M}, \; \left(q,q + \Delta t \: \mathcal{M}^{-1}\left[p - rac{\Delta t}{2}
abla V(q)
ight]
ight) \in \mathcal{D}
ight\}$$

and likewise, $\Psi_{\Delta t} = S \circ \Psi_{\Delta t}^{RATTLE}$ is defined on A.

Proposition ([TL, Rousset, Stoltz 2018]) If Λ is C^1 , then $\Psi_{\Delta t} : A \to T^*\mathcal{M}$ is a C^1 local diffeomorphism, locally preserving the phase-space measure $\sigma_{T^*\mathcal{M}}(dq dp)$. Step 3: the reverse projection check (3/8)Let us now introduce the RATTLE dynamics with momentum reversal and reverse projection check: for any $(q, p) \in T^*M$,

$$\Psi^{\mathrm{rev}}_{\Delta t}(q,p) = \Psi_{\Delta t}(q,p) \mathbb{1}_{\{(q,p)\in B\}} + (q,p) \mathbb{1}_{\{(q,p)
ot\in B\}}$$

where the set $B \subset A \subset T^*\mathcal{M}$ is defined by

$$B = \Big\{ (q,p) \in A, \, \Psi_{\Delta t}(q,p) \in A \text{ and } (\Psi_{\Delta t}(\Psi_{\Delta t})(q,p)) = (q,p) \Big\}.$$

Proposition ([TL, Rousset, Stoltz 2018])

Let us assume that Λ is C^1 and satisfies the non-tangential condition: $\forall (q, \tilde{q}) \in D$,

$$\left[
abla \xi \left(\widetilde{q} +
abla \xi(q) \Lambda(q, \widetilde{q})
ight)
ight]^T
abla \xi(q) \in \mathbb{R}^{m imes m}$$
 is invertible.

Then, the set *B* is the union of path connected components of the open set $A \cap \Psi_{\Delta t}^{-1}(A)$. It is thus an open set of $T^*\mathcal{M}$. Moreover, $\Psi_{\Delta t}^{\text{rev}} : T^*\mathcal{M} \to T^*\mathcal{M}$ is globally well defined, preserves globally the measure $\sigma_{T^*\mathcal{M}}(dq \, dp)$ and satisfies $\Psi_{\Delta t}^{\text{rev}} \circ \Psi_{\Delta t}^{\text{rev}} = \text{Id}$.

Step 3: the reverse projection check (4/8)

Practically, $\Psi_{\Delta t}^{\text{rev}}(q, p)$ is obtained from $(q, p) \in T^*\mathcal{M}$ by the following procedure:

- (1) check if (q, p) is in A; if not return (q, p);
- (2) when (q, p) ∈ A, compute the configuration (q¹, p¹) obtained by one step of the RATTLE scheme;
- (3) check if $(q^1, -p^1)$ is in A; if not, return (q, p);
- (4) compute the configuration (q², -p²) obtained by one step of the RATTLE scheme starting from (q¹, -p¹);

(5) if $(q^2, p^2) = (q, p)$, return $(q^1, -p^1)$; otherwise return (q, p). The steps (3)-(4)-(5) correspond to the *reverse projection check* [Goodman, Holmes-Cerfon, Zappa, 2017].

Step 3: the reverse projection check (5/8)

The reverse projection check is useful!

Here, V = 0 and the projection is defined as the closest point to \mathcal{M} . Notice that $q'' \neq q!$

Step 3: the reverse projection check (6/8)

Assume for simplicity that $\exists \alpha > 0$, $\{q \in \mathbb{R}^d, \|\xi(q)\| \le \alpha\}$ is compact. How to build admissible Lagrange multiplier functions?

- Theoretically, one can use the implicit function theorem to build a function Λ(q, q̃) for q̃ in a neighborhood of q.
- Numerically, one can use the Newton algorithm to extend this local construction and compute the Lagrange multipliers for q̃ far from q: perform a given number of iterations of the Newton algorithm; the set D is defined as the configurations for which convergence is obtained.

One can check that B is non empty with these Lagrange multiplier functions.

Both constructions rely on the existence of a Lagrange multiplier function $\Lambda : \mathcal{D}_{imp} \to \mathbb{R}^m$ where \mathcal{D}_{imp} is an open subset of $\mathcal{M} \times \mathbb{R}^d$ which contains $\{(q, \tilde{q}) \in \mathcal{M} \times \mathcal{M}, [\nabla \xi(q)]^T \nabla \xi(\tilde{q}) \text{ is invertible} \}.$

Step 3: the reverse projection check (7/8)The constrained GHMC algorithm writes:

$$\begin{split} f'(q^n, p^{n+1/4}) &= \Psi_{\Delta t/2}^{OU}(q^n, p^n) \\ (\tilde{q}^{n+1}, \tilde{p}^{n+3/4}) &= \Psi_{\Delta t}^{rev}(q^n, p^{n+1/4}) \\ \text{If } U^n &\leq e^{-H(\tilde{q}^{n+1}, \tilde{p}^{n+3/4}) + H(q^n, p^{n+1/4})} \\ &\text{ accept the proposal: } (q^{n+1}, p^{n+3/4}) = (\tilde{q}^{n+1}, \tilde{p}^{n+3/4}) \\ &\text{ else reject the proposal: } (q^{n+1}, p^{n+3/4}) = (q^n, p^{n+1/4}) \\ \tilde{p}^{n+1} &= -p^{n+3/4} \\ \zeta(q^{n+1}, p^{n+1}) &= \Psi_{\Delta t/2}^{OU}(q^{n+1}, \tilde{p}^{n+1}) \end{split}$$

where $U^n \sim \mathcal{U}(0, 1)$.

Proposition ([TL, Rousset, Stoltz 2018])

The Markov chain $(q^n, p^n)_{n\geq 0}$ admits μ as an invariant measure. To prove ergodicity, it remains to check irreducibility [Hartmann, 2008].

Step 3: the reverse projection check (8/8)

Remarks:

- In Ψ^{rev}_{Δt}, one can use any potential V! Choosing the potential V of the target measure is good to increase the acceptance probability.
- If $\Delta t \gamma/4 = 1$, one obtains a HMC (or MALA) algorithm. If $\Delta t \gamma/4 = 1$ and V = 0 in $\Psi_{\Delta t}^{rev}$, this is a constrained random walk MH algorithm [Goodman, Holmes-Cerfon, Zappa, 2017].
- In pratice, one can use K steps of RATTLE within Ψ^{rev} to get less correlated samples. [Bou-Rabee, Sanz Serna]
- If Ψ^{rev}_{Δt}(qⁿ, p^{n+1/4}) = Ψ_{Δt}(qⁿ, p^{n+1/4}) (reverse projection check OK), one obtains a consistent discretization of the constrained Langevin dynamics.
- Similar ideas can be used to enforce inequality constraints.
- It may be interesting for numerical purposes to consider non identity mass matrices.

Numerical experiments (1/3)

Let \mathcal{M} be the three-dimensional torus $\mathcal{M} = \{q \in \mathbb{R}^3, \, \xi(q) = 0\}$ where

$$\xi(q) = \left(R - \sqrt{x^2 + y^2}\right)^2 + z^2 - r^2,$$

with 0 < r < R. Let us consider for $\nu = \sigma_{T^*M}$ the uniform measure on \mathcal{M} .

"partial reverse check" = do not check $\Psi_{\Delta t} \circ \Psi_{\Delta t} = \mathrm{Id} \Rightarrow \mathsf{BIAS}!$

Numerical experiments (2/3)

Let us now consider a double well case: $\nu = e^{-V} \sigma_{T^*M}$ where $V(x, y, z) = k(x^2 - R^2)^2$.

Typical trajectories for the GHMC dynamics (left $\Delta t = 0.05$, right $\Delta t = 3$):

Numerical experiments (3/3)

Analysis of the efficiency (left mean residence duration, right: non-reversibility rejection rate)

The optimal timestep is of the order of 0.7. For such timesteps, the rejections due to the non reversibility condition $(q^n, p^n) \neq \Psi_{\Delta t} \circ \Psi_{\Delta t}(q^n, p^n)$ are of the order of 15-20%, the total rejection rate being about 90%.

 \rightarrow reverse projection check is useful to get efficient algorithms.

References

- G. Ciccotti, TL and E. Vanden-Eijnden, *Projection of diffusions on submanifolds: Application to mean force computation*, CPAM 61(3), 2008.
- E. Faou and TL, *Conservative stochastic differential equations: Mathematical and numerical analysis*, Math. Comp. 78, 2009.
- A.M. Horowitz, *A generalized guided Monte-Carlo algorithm*. Phys. Lett.B 268, 1991.
- TL, M. Rousset and G. Stoltz, *Langevin dynamics with* constraints and computation of free energy differences, Math. Comp. 81, 2012.
- TL, M. Rousset and G. Stoltz, *Hybrid Monte Carlo methods* for sampling probability measures on submanifolds, https://arxiv.org/abs/1807.02356.
- E. Zappa, M. Holmes-Cerfon and J. Goodman, *Monte Carlo* on manifolds: sampling densities and integrating functions, https://arxiv.org/abs/1702.08446.