Thermal transport in one-dimensional chains

Alessandra lacobucci iacob@ceremade.dauphine.fr

CEREMADE-CNRS, Université Paris-Dauphine

"Computational Statistics and Molecular Simulation: A Practical Cross-Fertilization"

BIRS, Oaxaca, November 11-16, 2018

Transport phenomena

Transport phenomena are characterized by the general macroscopic relation

$$J = -\alpha \, \nabla \phi$$

- $abla \phi$: forcing acting on the system (ϕ = temperature, electrical potential, concentration)
 - J : response of the system
 (current of energy, momentum, particle/mass)
 - α : transport coefficient (thermal conductivity, mobility, viscosity)

Remarks:

- 1. The presence of currents characterizes out-of-equilibrium systems.
- 2. For small $|\nabla \phi|$, α can be considered constant.
- 3. From now on $\phi = T$ and dimension 1

Outline

- Transport properties for small $|\nabla T|$
 - the computation of the thermal conductivity in a 1-D system, the example of the Toda chain
- Properties of a system far from equilibrium
 - the case of the forced rotor chain
- Macroscopic diffusion in the forced rotor chain (work in progress)

Transport properties in the linear regime

Heat transport in one-dimension

Fourier's law

$$\mathbf{J}(\mathbf{x},t) = -\kappa \nabla T(\mathbf{x},t) \xrightarrow{1-D} J_L = -\kappa_L \frac{\Delta T}{L}, \quad L = \text{sys. length}$$

where k, κ_L are the thermal conductivities.

- Validity of Fourier's law : $\lim_{L \to \infty} \lim_{\Delta T \to 0} \kappa_L = \kappa < \infty$
- Anomalous conductivity: $\kappa_L \sim L^{\alpha}$, with $\alpha > 0$

Models: atom chains. Simple, but still complicated to study:

- issues with analytical approaches
 - nonlinear interactions
 - very degenerate noise
 - invariant measure unknown
- issues with numerical approaches
 - computational constraint (time step, finite comp. time, sys. size, ...)
 - large relative error (large systems \Rightarrow small currents)

Microscopic model

•
$$\{(q_i, p_i), i = 1, \dots, N\} \in \mathbb{R}^{2N}$$
 , $r_i = q_i - q_{i-1}$

- unitary masses
- first particle attached to a wall ($q_0 = 0$, $p_0 = 0$), free/fixed BC on the right-end

•
$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2} + \sum_{i=1}^{N} U(q_i - q_{i-1})$$
 where $U(r)$ models the interaction

• $T_L = T_R = T \Rightarrow$ equilibrium with $\mu(\mathrm{d}q\,\mathrm{d}p) = \mathrm{e}^{-\mathcal{H}/\mathcal{T}}\,\mathrm{d}q\,\mathrm{d}p$

The system dynamics

Hamiltonian dynamics in the bulk, Langevin dynamics at the boundaries

$$\begin{cases} dq_i = p_i \, dt, \\ dp_i = \left(U'(q_{i+1} - q_i) - U'(q_i - q_{i-1}) \right) dt + \delta_{i,1} \left(-\xi p_1 \, dt + \sqrt{2\xi T_L} \, dW_{1,t} \right) + \\ \delta_{i,N} \left(-\xi p_N \, dt + \sqrt{2\xi T_R} \, dW_{N,t} \right), & \forall i \in [1, N]. \end{cases}$$

- \rightarrow $\xi > 0$ controls the coupling with the thermostats
- \rightarrow Existence and uniqueness of the invariant measure can be proved for a certain class of $U\in {\it C}^{\infty}$ $^{(1)}$

⁽¹⁾Carmona (2007), Rey-Bellet (2006).

Computation of transport coefficients : two main approaches

Denoting by $J_N(q_t, p_t) = \sum_{i=1}^{N-1} j_i(q_t, p_t)/(N-1)$ the total average instantaneous current

Non-equilibrium computation for $\Delta T \ll 1$ (linear response regime)

$$\kappa_{N,\Delta T} = rac{N}{\Delta T} \lim_{t o +\infty} rac{1}{t} \int_0^t J_N(q_s, p_s) \, \mathrm{d}s$$

Equilibrium computation based on the Green-Kubo formula

$$\kappa_{N,T}^{\mathsf{GK}} = rac{(N-1)^2}{T^2} \int_0^\infty \mathbb{E}_{\mu_T} \Big(J_N(q_0, p_0) J_N(q_t, p_t) \Big) dt, \qquad \mu_T \propto \mathrm{e}^{-\mathcal{H}/T}$$

Both approaches are theoretically equivalent (if both $\kappa_{N,\Delta T}$ and $\kappa_{N,T}^{GK}$ are finite).

Computing $\kappa_{N,\Delta T}$ (1/2)

- <u>Approximation</u>: $(q^m, p^m) \approx (q_{m\Delta t}, p_{m\Delta t})$
- Integration scheme: analytic integration of the fluctuation-dissipation part + Strang splitting with Verlet scheme ⁽²⁾ for the Hamiltonian part
- Currents computation at iteration m: $(r_i = q_i - q_{i-1})$

energy on site *i* :

local energy conservation :

instantaneaous energy current :

total average instantaneous current :

$$\begin{split} \varepsilon_{i} &= \frac{p_{i}^{2}}{2} + \frac{1}{2} \Big(U(r_{i}) - U(r_{i+1}) \Big) \\ \frac{\mathrm{d}\varepsilon_{i}}{\mathrm{d}t} &= j_{i-1,i} - j_{i,i+1} \\ j_{i,i+1} &= -\frac{1}{2} (p_{i} + p_{i+1}) U'(r_{i+1}) \\ J_{N} &= \frac{1}{N-1} \sum_{i=1}^{N-1} j_{i,i+1} \end{split}$$

⁽²⁾ Verlet (1967)

Computing
$$\kappa_{N,\Delta T}$$
 (2/2)

• Thermal conductivity : Computed by empirical average on M iterations

$$\widehat{\kappa}_{n,\Delta T} = rac{1}{\Delta T} \left(rac{1}{M+1} \sum_{0}^{M} J_{N}^{m}
ight)$$

$$\kappa_{N,\Delta T} \simeq \kappa + \mathcal{O}\left(rac{1}{\sqrt{(M\Delta t)}\,\Delta T}
ight)$$

This means that $M\Delta t = O((\Delta T)^{-2})$ and I have to keep $\Delta T \ll 1$ to remain in the linear response regime...

Example : $\kappa_{N,\Delta T}$ for the Toda chain

Out of the linear response regime

The rotor model $^{(3)}$

N interacting rotors + temperature gradient + constant force.

⁽³⁾ Iacobucci, Legoll, Olla, Stoltz (2011).

The system dynamics

Hamiltonian dynamics in the bulk, Langevin dynamics at the boundaries and mechanical forcing at the right end $(U'(q_{N+1}-q_N)=0))$

$$\begin{cases} dq_i = p_i \, dt \\ dp_i = \left(U'(q_{i+1} - q_i) - U'(q_i - q_{i-1}) + \delta_{i,N} F \right) dt \\ + \delta_{i,1} \left(-\xi p_1 \, dt + \sqrt{2\xi T_L} \, dW_{1,t} \right) \\ + \delta_{i,N} \left(-\xi p_N \, dt + \sqrt{2\xi T_R} \, dW_{N,t} \right) \end{cases} \quad \forall i \in [1, N],$$

• Average stationary energy current

energy on site
$$i$$
:
 $\varepsilon_i = \frac{p_i^2}{2m} + \frac{1}{2} \left(U(q_i - q_{i-1}) - U(q_{i+1} - q_i) \right)$
local energy conservation :
 $\frac{d\varepsilon_i}{dt} = j_{i-1,i} - j_{i,i+1}$
instantaneaous energy current :
 $j_{i,i+1} = -\frac{1}{2}(p_i + p_{i+1})U'(q_{i+1} - q_i)$
total average current :
 $J_N = \frac{1}{N-1} \sum_{i=1}^{N-1} \langle j_{i,i+1} \rangle$

About the system

<i>F</i> = 0	$T_{\rm L}=T_{\rm R}=T_{\rm eq}$	→ equilibrium \Rightarrow stationary Gibbs measure with $\beta = T_{\rm eq}^{-1}$
	$T_{\rm L} eq T_{\rm R}$	\rightarrow finite thermal conductivity ⁽⁴⁾
$F \neq 0$	$T_{\rm L} = T_{\rm R} = \overline{T}$	\rightarrow out of equilibrium
		→ the stationary measure not explicitly known; existence proved $^{(5)}$ only for $N \le 4$
		→ highly non-linear temperature profiles
$F \neq 0$	$T_{\rm L} eq T_{\rm R}$	\rightarrow forcing mechanisms not necessarily additive

⁽⁴⁾ Giardiná, Livi, Politi, Vassalli (2000), Gendelman and Savin (2000,2005), Yang and Hu (2005), Das and Dhar, arXiv:1411.5247 (2014).

⁽⁵⁾ Cuneo, Eckmann & Poquet (2015); Cuneo & Eckmann (2016); Cuneo & Poquet (2017)

A. lacobucci (CEREMADE)

Highly non-monotonic "temperature" and momentum profiles

$$T_{i,\text{kin}}^{\text{loc}} := \overline{(p_i^2)} - (\overline{p_i})^2$$
. Profiles for $N = 1024$, $F = 1.6$.

The macroscopic diffusion model

Macroscopic description of the model (work in progress)

Total energy and total momentum are conserved by the dynamics.

We introduce

ightarrow e(x,t) and p(x,t), $t\in \mathbb{R}^+$ and $x\in [0,1]$, and $eta(x,t)=\mathcal{T}^{-1}(x,t)$

 \rightarrow u(x,t) internal energy. It holds (by thermodynamics)

$$u(x,t)=e(x,t)-\frac{p(x,t)^2}{2}$$

and at fixed (x, t), by thermodynamics

$$u(\beta) = \left(1 - \frac{l_1(\beta)}{l_0(\beta)}\right) + (2\beta)^{-1} \qquad \Rightarrow \qquad \beta(u)$$

where I_0, I_1 are modified Bessel function of the first kind

 \rightarrow We thus obtain T(x, t).

Evolution

• It can be shown that e(x, t) and p(x, t) evolve following

$$\partial_t \begin{pmatrix} p \\ e \end{pmatrix} = \partial_x \left(K(\beta, p) \ \partial_x \begin{pmatrix} p \\ e \end{pmatrix} \right), \qquad K(\beta, e) = \begin{bmatrix} K^{pp} & K^{pe} \\ K^{ep} & K^{ee} \end{bmatrix},$$

where ${\it K}$ is the Onsager matrix, whose elements are Green-Kubo coefficients.

• Setting $K^{pp}(\beta, 0) \doteq K_1$ and $K^{ee}(\beta, 0) \doteq K_2$, it can be shown that

$$K^{pp}(\beta, p) \equiv K_1 \doteq K_1, \qquad K^{ee}(\beta, p) = K_2 + p^2 K_1$$

 $K^{pe}(\beta, p) = K^{ep}(\beta, p) = pK_1$

The stationary problem

$$\partial_{x}(K_{1} \partial_{x} p + pK_{1} \partial_{x} e) = 0$$
$$\partial_{x}(p[K_{1} \partial_{x} p + pK_{1} \partial_{x} e] + K_{2} \partial_{x} e) = 0$$

A. lacobucci (CEREMADE)

Numerical solution of the stationary problem

- $\rightarrow\,$ Compute ${\it K}_1$ and ${\it K}_2$ at equilibrium (.....)
- → Solve the stationary problem with Dirichelet BC $p(0,0) = p_L$, $p(1,0) = p_R$, $T(0,0) = T_L$ and $T(1,0) = T_R$ by the following fixed point algorithm
 - 1. find $\{p^{k,n}\}$ solutions of the first equation for fixed $\{e^{k,n-1}\}$;
 - 2. find $\{e^{k,n}\}$ solutions of the second equation for fixed $\{p^{k,n}\}$;
 - 3. compute $\{u^{k,n}\}$ as $u^{k,n} = e^{k,n} (p^{k,n})^2/(2m)$;
 - 4. find $\{\beta^{k,n}\}$ by numerically inverting the function

$$U_0\left(1-\frac{I_1(U_0\beta^{k,n})}{I_0(U_0\beta^{k,n})}\right)+(2\beta^{k,n})^{-1}=u^{k,n};$$

5. update $\{K_1^{k,n}\}$ and $\{K_2^{k,n}\}$; 6. if both

$$\left\|\left\{p^{k,n}\right\}-\left\{p^{k,n-1}\right\}\right\|\geq \varepsilon$$

and

$$\left\|\left\{\mathbf{e}^{k,n}\right\}-\left\{\mathbf{e}^{k,n-1}\right\}\right\|\geq\varepsilon$$

for a fixed ε go to 1, otherwise you have reached the steady state.

Stationary profiles (1/2)

 $K_1(\beta)$ and $K_2(\beta)$ form lubini et al (2016), $T_L = T_R = 0.2$, $p_L = -1.0$, $p_R = 1.0$.

K₁(β), K₂(β), T_L=0.2, T_R=0.2, p_L=-1.0, p_R=1.0

Stationary profiles (2/2)

$K_1(\beta)$ and $K_2(\beta)$ form lubini et al (2016), $T_L = 0.2$, $T_R = 0.5$, $p_L = -1.0$, $p_R = 1.0$.

 $K_1(\beta), \ \ K_2(\beta), \ \ T_L=0.2, \ \ T_R=0.5, \ \ p_L=-1.0, \ \ p_R=1.0, \ \ ncycles=104.0$

