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Problem specification

• Target distribution on Rd

π(dx) =
γ(x) dx

Z

where γ : Rd → R+ can be evaluated pointwise and

Z =

∫
Rd

γ(x) dx

is unknown

• Problem 1: Obtain consistent estimator of π(ϕ) :=
∫
Rd ϕ(x)π(dx)

• Problem 2: Obtain unbiased and consistent estimator of Z
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Motivation: Bayesian computation

• Prior distribution π0 on unknown parameters of a model

• Likelihood function L : Rd → R+ of data y

• Bayes update gives posterior distribution on Rd

π(dx) =
π0(x)L(x) dx

Z
,

where Z =
∫
Rd π0(x)L(x) dx is the marginal likelihood of y

• π(ϕ) and Z are typically intractable
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Monte Carlo methods

• Typically sampling from π is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods

• MCMC constructs a π-invariant Markov kernel
K : Rd × B(Rd)→ [0, 1]

• Sample X0 ∼ π0 and iterate Xn ∼ K (Xn−1, ·) until convergence

• MCMC can fail in practice, for e.g. when π is highly multi-modal

Jeremy Heng Flow transport 4/ 24



Monte Carlo methods

• Typically sampling from π is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods

• MCMC constructs a π-invariant Markov kernel
K : Rd × B(Rd)→ [0, 1]

• Sample X0 ∼ π0 and iterate Xn ∼ K (Xn−1, ·) until convergence

• MCMC can fail in practice, for e.g. when π is highly multi-modal

Jeremy Heng Flow transport 4/ 24



Monte Carlo methods

• Typically sampling from π is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods

• MCMC constructs a π-invariant Markov kernel
K : Rd × B(Rd)→ [0, 1]

• Sample X0 ∼ π0 and iterate Xn ∼ K (Xn−1, ·) until convergence

• MCMC can fail in practice, for e.g. when π is highly multi-modal

Jeremy Heng Flow transport 4/ 24



Monte Carlo methods

• Typically sampling from π is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods

• MCMC constructs a π-invariant Markov kernel
K : Rd × B(Rd)→ [0, 1]

• Sample X0 ∼ π0 and iterate Xn ∼ K (Xn−1, ·) until convergence

• MCMC can fail in practice, for e.g. when π is highly multi-modal

Jeremy Heng Flow transport 4/ 24



Annealed importance sampling

• If π0 and π are distant,

define bridges

πλm(dx) =
π0(x)L(x)λm dx

Z (λm)
,

with 0 = λ0 < λ1 < . . . < λM = 1 so
that π1 = π

• Initialize X0 ∼ π0 and move Xm ∼ Km(Xm−1, ·) for m = 1, . . . ,M,
where Km is πλm-invariant

• Annealed importance sampling constructs w : (Rd)M+1 → R+ so
that

π(ϕ) =
E [ϕ(XM)w(X0:M)]

E [w(X0:M)]
, Z = E [w(X0:M)]

• AIS (Neal, 2001) and SMC samplers (Del Moral et al., 2006) are
considered state-of-the-art in statistics and machine learning
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Jarzynski nonequilibrium equality

• Consider M →∞,

i.e. define the curve
of distribution {πt}t∈[0,1]

πt(dx) =
π0(x)L(x)λ(t) dx

Z (t)
,

where λ : [0, 1]→ [0, 1] is a strictly
increasing C 1 function

• Initialize X0 ∼ π0 and run time-inhomogenous Langevin dynamics

dXt =
1

2
∇ log πt(Xt)dt + dWt , t ∈ [0, 1]

• Jarzynski equality (Jarzynski, 1997; Crooks, 1998) constructs
w : C ([0, 1],Rd)→ R+ so that

π(ϕ) =
E
[
ϕ(X1)w(X[0,1])

]
E
[
w(X[0,1])

] , Z = E
[
w(X[0,1])

]
• To what extent is this state-of-the-art in molecular dynamics?
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Optimal dynamics

• Dynamical lag ‖Law(Xt)− πt‖ impacts variance of estimators

• Vaikuntanathan & Jarzynski (2011) considered adding drift
f : [0, 1]× Rd → Rd to reduce lag

dXt = f (t,Xt)dt +
1

2
∇ log πt(Xt)dt + dWt , t ∈ [0, 1],X0 ∼ π0

• An optimal choice of f results in zero lag, i.e. Xt ∼ πt for t ∈ [0, 1],
and zero variance estimator of Z

• Any optimal choice f satisfies Liouville PDE

−∇ · (πt(x)f (t, x)) = ∂tπt(x)

• Zero lag also achieved by running deterministic dynamics

dXt = f (t,Xt)dt, X0 ∼ π0
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Time evolution of distributions

• Time evolution of πt is given by

∂tπt(x) = λ′(t) (log L(x)− It)πt(x),

where

It =
1

λ′(t)

d

dt
logZ (t)

!
= Eπt [log L(Xt)] <∞

• Integrating recovers path sampling (Gelman and Meng, 1998) or
thermodynamic integration (Kirkwood, 1935) identity

log

(
Z (1)

Z (0)

)
=

∫ 1

0

λ′(t)It dt.
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Liouville PDE

• Dynamics governed by ODE

dXt = f (t,Xt)dt, X0 ∼ π0

• For sufficiently regular f , ODE admits a unique solution

t 7→ Xt , t ∈ [0, 1]

inducing a curve of distributions

{π̃t := Law(Xt), t ∈ [0, 1]}

satisfying Liouville PDE

−∇ · (π̃t f ) = ∂t π̃t , π̃0 = π0
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Defining the flow transport problem

• Set π̃t = πt , for t ∈ [0, 1] and solve Liouville equation

−∇ · (πt f ) = ∂tπt , (L)

for a drift f ... but not all solutions will work!

• Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

A1 f is locally Lipschitz;

A2
∫ 1

0

∫
Rd |f (t, x)|πt(x) dx dt <∞;

Eulerian Liouville PDE ⇐⇒ Lagrangian ODE

• Define flow transport problem as solving Liouville (L) for f that
satisfies [A1] & [A2]
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Ill-posedness and regularization

• Under-determined: consider πt = N ((0, 0) , I2) for t ∈ [0, 1],

f (x1, x2) = (0, 0) and f (x1, x2) = (−x2, x1)

are both solutions

• Regularization: seek minimal kinetic energy solution

argminf

{∫ 1

0

∫
Rd

|f (t, x)|2πt(x) dx dt : f solves Liouville

}
EL

=⇒ f ∗ = ∇ϕ where −∇ · (πt∇ϕ) = ∂tπt

• Analytical solution available when distributions are (mixtures of)
Gaussians (Reich, 2012)
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Flow transport problem on R

• Minimal kinetic energy solution

f (t, x) =
−
∫ x

−∞ ∂tπt(u) du

πt(x)

• Checking Liouville

−∇ · (πt f ) = ∂x

∫ x

−∞
∂tπt(u) du = ∂tπt(x)

A1 For f to be locally Lipschitz, assume

π0, L ∈ C 1(R,R+) =⇒ f ∈ C 1([0, 1]× R,R)

A2 For integrability of
∫ 1

0

∫
Rd |f (t, x)|πt(x) dx dt <∞, necessarily

|πt f |(t, x) =

∣∣∣∣∫ x

−∞
∂tπt(u) du

∣∣∣∣→ 0 as |x | → ∞

since
∫∞
−∞ ∂tπt(u) du = 0

• Optimality: f = ∇ϕ holds trivially
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Flow transport problem on R

• Re-write solution as

f (t, x) =
λ′(t)It {Ft(x)− I xt /It}

πt(x)

where I xt = Eπt [1(−∞,x] log L(Xt)] and Ft is CDF of πt

• Speed is controlled by and

• Sign is given by difference between Ft(x) and I xt /It ∈ [0, 1]
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Flow transport problem on Rd , d ≥ 1

• Multivariate solution for d = 3

(πt f1)(t, x1:3) =−
∫ x1

−∞
∂tπt(u1, x2, x3) du1

+ g1(t, x1)

∫ ∞
−∞

∂tπt(u1, x2, x3) du1

(πt f2)(t, x1:3) =− g ′1(t, x1)

∫ ∞
−∞

∫ x2

−∞
∂tπt(u1, u2, x3) du1:2

+ g ′1(t, x1)g2(t, x2)

∫ ∞
−∞

∫ ∞
−∞

∂tπt(u1, u2, x3) du1:2

(πt f3)(t, x1:3) =− g ′1(t, x1)g ′2(t, x2)

∫ ∞
−∞

∫ ∞
−∞

∫ x3

−∞
∂tπt(u1, u2, u3) du1:3

where g1, g2 ∈ C 2([0, 1]× R, [0, 1])
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Flow transport problem on Rd , d ≥ 1

• Checking Liouville

∂x1(πt f1)(t, x1:3) =− ∂tπt(x1, x2, x3)

+ g ′1(t, x1)

∫ ∞
−∞

∂tπt(u1, x2, x3) du1

∂x2(πt f2)(t, x1:3) =− g ′1(t, x1)

∫ ∞
−∞

∂tπt(u1, x2, x3) du1:2

+ g ′1(t, x1)g ′2(t, x2)

∫ ∞
−∞

∫ ∞
−∞

∂tπt(u1, u2, x3) du1:2

∂x3(πt f3)(t, x1:3) =− g ′1(t, x1)g ′2(t, x2)

∫ ∞
−∞

∫ ∞
−∞

∂tπt(u1, u2, x3) du1:2

• Taking divergence gives telescopic sum

−∇ · (πt f )(t, x1:3) = −
3∑

i=1

∂xi (πt fi )(t, x1:3) = ∂tπt(x1:3)
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Flow transport problem on Rd , d ≥ 1

A1 For f to be locally Lipschitz, assume

π0, L ∈ C 1(Rd ,R+) =⇒ f ∈ C 1([0, 1]× Rd ,Rd)

A2 For integrability of
∫ 1

0

∫
Rd |f (t, x)|πt(x) dx dt <∞, necessarily

|πt f |(t, x)| → 0 as |x | → ∞

if {gi} are non-decreasing functions with tail behaviour

gi (t, xi )→ 0 as xi → −∞,
gi (t, xi )→ 1 as xi →∞

• Choosing gi (t, xi ) = Ft(xi ) as marginal CDF of πt allows f to
decouple if distributions are independent
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Approximate Gibbs flow transport

• Solution involved integrals of increasing dimension as it tracks
increasing conditional distributions

πt(x1|x2:d), πt(x2|3:d), . . . , πt(xd), xi ∈ R

• Trade-off accuracy for computational tractability: track full
conditional distributions

πt(xi |x−i ), xi ∈ Rdi

• System of Liouville equations

−∇xi ·
{
πt(xi |x−i )f̃i (t, x)

}
= ∂tπt(xi |x−i ),

each defined on (0, 1)× Rdi
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Approximate Gibbs flow transport

• For di = 1, solution is

f̃i (t, x) =
−
∫ xi
−∞ ∂tπt(ui |x−i ) dui

πt(xi |x−i )

• If π0, L ∈ C 1(Rd ,R+) and lim|x|→∞ L(x) = 0, the ODE

dXt = f̃ (t,Xt)dt, X0 ∼ π0

admits a unique solution on [0, 1], referred to as Gibbs flow

• For di > 1, can often exploit analytical tractability of πt(xi |x−i ) to
solve for f̃i (t, x); or apply multivariate extension

• Otherwise, analogous to Metropolis-within-Gibbs, split into one
dimensional components and apply above
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Error control

• Define local error

εt(x) =
∣∣∣∂tπt(x) +∇ · (πt(x)f̃ (t, x))

∣∣∣
=

∣∣∣∣∣∂tπt(x)−
p∑

i=1

∂tπt(xi |x−i )πt(x−i )

∣∣∣∣∣

• Gibbs flow exploits local independence:

πt(x) =

p∏
i=1

πt(xi ) =⇒ εt(x) = 0

• If Gibbs flow induces {π̃t}t∈[0,1] with π̃0 = π0

‖π̃t − πt‖2L2 ≤ t

∫ t

0

‖εu‖2L2 du · exp

(
1 +

∫ t

0

‖∇ · f̃ (u, ·) ‖∞ du

)
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Numerical integration of Gibbs flow

• Previously, we considered the forward Euler scheme

Ym = Ym−1 + ∆t f̃ (tm−1,Ym−1) = Φm(Ym−1)

• To get Law(Ym), we need Jacobian determinant of Φm which
typically costs O(d3) for di = 1

• In contrast, this scheme mimicking a systematic Gibbs scan

Ym[i ] = Ym−1[i ] + ∆t f̃ (tm−1,Ym[1 : i − 1],Ym−1[i : p])

Ym = Φm,d ◦ · · · ◦ Φm,1(Ym−1)

is also order one, and costs O(d)
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Mixture modelling example

• Lack of identifiability induces π on R4 with 4! = 24 well-separated
and identical modes

• Gibbs flow approximation
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Mixture modelling example

• Proportion of particles in each of the 24 modes
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• Pearson’s Chi-squared test for uniformity gives p-value of 0.85
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Cox point process model

• Effective sample size % in dimension d

• AIS: AIS with HMC moves

• GF-SIS: Gibbs flow

• GF-AIS: Gibbs flow with HMC moves
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End

• Heng, J., Doucet, A., & Pokern, Y. (2015). Gibbs Flow for
Approximate Transport with Applications to Bayesian Computation.
arXiv preprint arXiv:1509.08787.

• Updated article and R package coming soon!
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