Gibbs flow transport for Bayesian inference

Jeremy Heng, Department of Statistics, Harvard University

Joint work with Arnaud Doucet (Oxford) & Yvo Pokern (UCL)

Computational Statistics and Molecular Simulation: A Practical Cross-Fertilization Casa Matemática Oaxaca (CMO) 13 November 2018

Problem specification

• **Target** distribution on \mathbb{R}^d

$$\pi(dx) = \frac{\gamma(x)\,dx}{Z}$$

where $\gamma: \mathbb{R}^d \rightarrow \mathbb{R}_+$ can be evaluated pointwise and

$$Z=\int_{\mathbb{R}^d}\gamma(x)\,dx$$

is unknown

Problem specification

• **Target** distribution on \mathbb{R}^d

$$\pi(dx) = \frac{\gamma(x)\,dx}{Z}$$

where $\gamma: \mathbb{R}^d \rightarrow \mathbb{R}_+$ can be evaluated pointwise and

$$Z=\int_{\mathbb{R}^d}\gamma(x)\,dx$$

is unknown

• **Problem 1**: Obtain consistent estimator of $\pi(\varphi) := \int_{\mathbb{R}^d} \varphi(x) \pi(dx)$

Problem specification

• **Target** distribution on \mathbb{R}^d

$$\pi(dx) = \frac{\gamma(x)\,dx}{Z}$$

where $\gamma: \mathbb{R}^d \rightarrow \mathbb{R}_+$ can be evaluated pointwise and

$$Z=\int_{\mathbb{R}^d}\gamma(x)\,dx$$

is unknown

- **Problem 1**: Obtain consistent estimator of $\pi(\varphi) := \int_{\mathbb{R}^d} \varphi(x) \pi(dx)$
- Problem 2: Obtain unbiased and consistent estimator of Z

• **Prior** distribution π_0 on unknown parameters of a model

Motivation: Bayesian computation

- **Prior** distribution π_0 on unknown parameters of a model
- **Likelihood** function $L : \mathbb{R}^d \to \mathbb{R}_+$ of data y

Motivation: Bayesian computation

- **Prior** distribution π_0 on unknown parameters of a model
- **Likelihood** function $L : \mathbb{R}^d \to \mathbb{R}_+$ of data y
- Bayes update gives **posterior** distribution on \mathbb{R}^d

$$\pi(dx)=\frac{\pi_0(x)L(x)\,dx}{Z},$$

where $Z = \int_{\mathbb{R}^d} \pi_0(x) L(x) \, dx$ is the marginal likelihood of y

Motivation: Bayesian computation

- **Prior** distribution π_0 on unknown parameters of a model
- **Likelihood** function $L : \mathbb{R}^d \to \mathbb{R}_+$ of data y
- Bayes update gives **posterior** distribution on \mathbb{R}^d

$$\pi(dx)=\frac{\pi_0(x)L(x)\,dx}{Z},$$

where $Z = \int_{\mathbb{R}^d} \pi_0(x) L(x) dx$ is the marginal likelihood of y

• $\pi(\varphi)$ and Z are typically intractable

• Typically sampling from π is intractable, so we rely on **Markov** chain Monte Carlo (MCMC) methods

- Typically sampling from π is intractable, so we rely on **Markov** chain Monte Carlo (MCMC) methods
- MCMC constructs a π -invariant Markov kernel $\mathcal{K} : \mathbb{R}^d \times \mathcal{B}(\mathbb{R}^d) \rightarrow [0, 1]$

- Typically sampling from π is intractable, so we rely on **Markov** chain Monte Carlo (MCMC) methods
- MCMC constructs a π -invariant Markov kernel $\mathcal{K} : \mathbb{R}^d \times \mathcal{B}(\mathbb{R}^d) \rightarrow [0, 1]$
- Sample $X_0 \sim \pi_0$ and iterate $X_n \sim \mathcal{K}(X_{n-1}, \cdot)$ until convergence

- Typically sampling from π is intractable, so we rely on **Markov** chain Monte Carlo (MCMC) methods
- MCMC constructs a π -invariant Markov kernel $\mathcal{K} : \mathbb{R}^d \times \mathcal{B}(\mathbb{R}^d) \rightarrow [0, 1]$
- Sample $X_0 \sim \pi_0$ and iterate $X_n \sim K(X_{n-1}, \cdot)$ until convergence
- MCMC can fail in practice, for e.g. when π is highly multi-modal

• If π_0 and π are distant,

• If π_0 and π are distant, define **bridges**

$$\pi_{\lambda_m}(dx) = \frac{\pi_0(x)L(x)^{\lambda_m} dx}{Z(\lambda_m)},$$

with $0 = \lambda_0 < \lambda_1 < \ldots < \lambda_M = 1$ so that $\pi_1 = \pi$

• If π_0 and π are distant, define **bridges**

$$\pi_{\lambda_m}(dx) = \frac{\pi_0(x)L(x)^{\lambda_m} dx}{Z(\lambda_m)},$$

with 0 = $\lambda_0 < \lambda_1 < \ldots < \lambda_M = 1$ so that $\pi_1 = \pi$

• Initialize $X_0 \sim \pi_0$ and move $X_m \sim K_m(X_{m-1}, \cdot)$ for $m = 1, \ldots, M$, where K_m is π_{λ_m} -invariant

• If π_0 and π are distant, define **bridges**

$$\pi_{\lambda_m}(dx) = \frac{\pi_0(x)L(x)^{\lambda_m} dx}{Z(\lambda_m)},$$

with 0 = $\lambda_0 < \lambda_1 < \ldots < \lambda_M = 1$ so that $\pi_1 = \pi$

- Initialize $X_0 \sim \pi_0$ and move $X_m \sim K_m(X_{m-1}, \cdot)$ for m = 1, ..., M, where K_m is π_{λ_m} -invariant
- Annealed importance sampling constructs $w : (\mathbb{R}^d)^{M+1} \to \mathbb{R}_+$ so that

$$\pi(\varphi) = \frac{\mathbb{E}\left[\varphi(X_M)w(X_{0:M})\right]}{\mathbb{E}\left[w(X_{0:M})\right]}, \quad Z = \mathbb{E}\left[w(X_{0:M})\right]$$

• If π_0 and π are distant, define **bridges**

$$\pi_{\lambda_m}(dx) = \frac{\pi_0(x)L(x)^{\lambda_m} dx}{Z(\lambda_m)},$$

with 0 = $\lambda_0 < \lambda_1 < \ldots < \lambda_M = 1$ so that $\pi_1 = \pi$

- Initialize $X_0 \sim \pi_0$ and move $X_m \sim K_m(X_{m-1}, \cdot)$ for m = 1, ..., M, where K_m is π_{λ_m} -invariant
- Annealed importance sampling constructs $w : (\mathbb{R}^d)^{M+1} \to \mathbb{R}_+$ so that

$$\pi(\varphi) = \frac{\mathbb{E}\left[\varphi(X_M)w(X_{0:M})\right]}{\mathbb{E}\left[w(X_{0:M})\right]}, \quad Z = \mathbb{E}\left[w(X_{0:M})\right]$$

• AIS (Neal, 2001) and SMC samplers (Del Moral et al., 2006) are considered state-of-the-art in statistics and machine learning

• Consider $M \to \infty$,

• Consider $M \to \infty$, i.e. define the curve of distribution $\{\pi_t\}_{t \in [0,1]}$

• Consider $M \to \infty$, i.e. define the curve of distribution $\{\pi_t\}_{t \in [0,1]}$

$$\pi_t(dx) = \frac{\pi_0(x)L(x)^{\lambda(t)} dx}{Z(t)},$$

where $\lambda:[0,1]\rightarrow [0,1]$ is a strictly increasing \mathcal{C}^1 function

• Consider $M \to \infty$, i.e. define the curve of distribution $\{\pi_t\}_{t \in [0,1]}$

$$\pi_t(dx) = \frac{\pi_0(x)L(x)^{\lambda(t)} dx}{Z(t)},$$

where $\lambda:[0,1]\rightarrow [0,1]$ is a strictly increasing ${\mathcal C}^1$ function

• Initialize $X_0 \sim \pi_0$ and run **time-inhomogenous Langevin dynamics**

$$dX_t = rac{1}{2}
abla \log \pi_t(X_t) dt + dW_t, \quad t \in [0, 1]$$

• Consider $M \to \infty$, i.e. define the curve of distribution $\{\pi_t\}_{t \in [0,1]}$

$$\pi_t(dx) = \frac{\pi_0(x)L(x)^{\lambda(t)} dx}{Z(t)},$$

where $\lambda:[0,1]\rightarrow [0,1]$ is a strictly increasing C^1 function

• Initialize $X_0 \sim \pi_0$ and run time-inhomogenous Langevin dynamics

$$dX_t = rac{1}{2}
abla \log \pi_t(X_t) dt + dW_t, \quad t \in [0, 1]$$

• Jarzynski equality (Jarzynski, 1997; Crooks, 1998) constructs $w: C([0,1], \mathbb{R}^d) \to \mathbb{R}_+$ so that

$$\pi(\varphi) = \frac{\mathbb{E}\left[\varphi(X_1)w(X_{[0,1]})\right]}{\mathbb{E}\left[w(X_{[0,1]})\right]}, \quad Z = \mathbb{E}\left[w(X_{[0,1]})\right]$$

• Consider $M \to \infty$, i.e. define the curve of distribution $\{\pi_t\}_{t \in [0,1]}$

$$\pi_t(dx) = \frac{\pi_0(x)L(x)^{\lambda(t)} dx}{Z(t)},$$

- where $\lambda:[0,1]\to [0,1]$ is a strictly increasing ${\mathcal C}^1$ function
 - Initialize $X_0 \sim \pi_0$ and run time-inhomogenous Langevin dynamics

$$dX_t = rac{1}{2}
abla \log \pi_t(X_t) dt + dW_t, \quad t \in [0, 1]$$

• Jarzynski equality (Jarzynski, 1997; Crooks, 1998) constructs $w: C([0,1], \mathbb{R}^d) \to \mathbb{R}_+$ so that

$$\pi(\varphi) = \frac{\mathbb{E}\left[\varphi(X_1)w(X_{[0,1]})\right]}{\mathbb{E}\left[w(X_{[0,1]})\right]}, \quad Z = \mathbb{E}\left[w(X_{[0,1]})\right]$$

• To what extent is this state-of-the-art in molecular dynamics?

• Dynamical lag $\|Law(X_t) - \pi_t\|$ impacts variance of estimators

- Dynamical lag $\|Law(X_t) \pi_t\|$ impacts variance of estimators
- Vaikuntanathan & Jarzynski (2011) considered adding drift $f:[0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ to reduce lag

$$dX_t = f(t, X_t)dt + \frac{1}{2}\nabla \log \pi_t(X_t)dt + dW_t, \quad t \in [0, 1], X_0 \sim \pi_0$$

- Dynamical lag $\|Law(X_t) \pi_t\|$ impacts variance of estimators
- Vaikuntanathan & Jarzynski (2011) considered adding drift $f:[0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ to reduce lag

$$dX_t = f(t,X_t)dt + rac{1}{2}
abla \log \pi_t(X_t)dt + dW_t, \quad t \in [0,1], X_0 \sim \pi_0$$

 An optimal choice of *f* results in zero lag, i.e. X_t ~ π_t for t ∈ [0, 1], and zero variance estimator of Z

- Dynamical lag $\|Law(X_t) \pi_t\|$ impacts variance of estimators
- Vaikuntanathan & Jarzynski (2011) considered adding drift $f:[0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ to reduce lag

$$dX_t = f(t, X_t)dt + \frac{1}{2}\nabla \log \pi_t(X_t)dt + dW_t, \quad t \in [0, 1], X_0 \sim \pi_0$$

- An optimal choice of *f* results in zero lag, i.e. X_t ~ π_t for t ∈ [0, 1], and zero variance estimator of Z
- Any optimal choice f satisfies Liouville PDE

$$-\nabla \cdot (\pi_t(x)f(t,x)) = \partial_t \pi_t(x)$$

- Dynamical lag $\|Law(X_t) \pi_t\|$ impacts variance of estimators
- Vaikuntanathan & Jarzynski (2011) considered adding drift $f:[0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ to reduce lag

$$dX_t = f(t, X_t)dt + \frac{1}{2}\nabla \log \pi_t(X_t)dt + dW_t, \quad t \in [0, 1], X_0 \sim \pi_0$$

- An optimal choice of *f* results in zero lag, i.e. X_t ~ π_t for t ∈ [0, 1], and zero variance estimator of Z
- Any optimal choice f satisfies Liouville PDE

$$-\nabla \cdot (\pi_t(x)f(t,x)) = \partial_t \pi_t(x)$$

• Zero lag also achieved by running deterministic dynamics

$$dX_t = f(t, X_t)dt, \quad X_0 \sim \pi_0$$

Time evolution of distributions

• Time evolution of π_t is given by

$$\partial_t \pi_t(x) = \lambda'(t) \left(\log L(x) - I_t \right) \pi_t(x),$$

where

$$I_t = rac{1}{\lambda'(t)} rac{d}{dt} \log Z(t) \stackrel{!}{=} \mathbb{E}_{\pi_t}[\log L(X_t)] < \infty$$

Time evolution of distributions

• Time evolution of π_t is given by

$$\partial_t \pi_t(x) = \lambda'(t) \left(\log L(x) - I_t \right) \pi_t(x),$$

where

$$I_t = rac{1}{\lambda'(t)} rac{d}{dt} \log Z(t) \stackrel{!}{=} \mathbb{E}_{\pi_t}[\log L(X_t)] < \infty$$

 Integrating recovers path sampling (Gelman and Meng, 1998) or thermodynamic integration (Kirkwood, 1935) identity

$$\log\left(\frac{Z(1)}{Z(0)}\right) = \int_0^1 \lambda'(t) I_t \, dt.$$

• Dynamics governed by ODE

$$dX_t = f(t, X_t)dt, \quad X_0 \sim \pi_0$$

• Dynamics governed by ODE

$$dX_t = f(t, X_t)dt, \quad X_0 \sim \pi_0$$

• For sufficiently regular f, ODE admits a unique solution

$$t\mapsto X_t, \quad t\in [0,1]$$

• Dynamics governed by ODE

$$dX_t = f(t, X_t)dt, \quad X_0 \sim \pi_0$$

• For sufficiently regular f, ODE admits a unique solution

$$t\mapsto X_t, \quad t\in [0,1]$$

Dynamics governed by ODE

$$dX_t = f(t, X_t)dt, \quad X_0 \sim \pi_0$$

• For sufficiently regular f, ODE admits a unique solution

$$t\mapsto X_t, \quad t\in [0,1]$$

inducing a curve of distributions

$$\{\tilde{\pi}_t := \operatorname{Law}(X_t), \ t \in [0,1]\}$$

Dynamics governed by ODE

$$dX_t = f(t, X_t)dt, \quad X_0 \sim \pi_0$$

• For sufficiently regular f, ODE admits a unique solution

$$t\mapsto X_t, \quad t\in [0,1]$$

inducing a curve of distributions

$$\{\widetilde{\pi}_t := \operatorname{Law}(X_t), \ t \in [0,1]\}$$

satisfying Liouville PDE

$$-\nabla \cdot \left(\tilde{\pi}_t f \right) = \partial_t \tilde{\pi}_t, \quad \tilde{\pi}_0 = \pi_0$$

Defining the flow transport problem

• Set $\tilde{\pi}_t = \pi_t$, for $t \in [0, 1]$ and solve Liouville equation

$$-\nabla \cdot (\pi_t f) = \partial_t \pi_t, \quad (L)$$

for a drift f... but not all solutions will work!
• Set $\tilde{\pi}_t = \pi_t$, for $t \in [0,1]$ and solve Liouville equation

$$-\nabla \cdot (\pi_t f) = \partial_t \pi_t, \quad (L)$$

for a drift f... but not all solutions will work!

• Validity relies on following result:

• Set $\tilde{\pi}_t = \pi_t$, for $t \in [0, 1]$ and solve Liouville equation

$$-\nabla \cdot (\pi_t f) = \partial_t \pi_t, \quad (L)$$

for a drift f... but not all solutions will work!

• Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

Eulerian Liouville PDE \iff Lagrangian ODE

• Set $\tilde{\pi}_t = \pi_t$, for $t \in [0, 1]$ and solve Liouville equation

$$-\nabla \cdot (\pi_t f) = \partial_t \pi_t, \quad (L)$$

for a drift f... but not all solutions will work!

• Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

A1 f is locally Lipschitz;

Eulerian Liouville PDE \iff Lagrangian ODE

• Set $\tilde{\pi}_t = \pi_t$, for $t \in [0, 1]$ and solve Liouville equation

$$-\nabla \cdot (\pi_t f) = \partial_t \pi_t, \quad (L)$$

for a drift f... but not all solutions will work!

• Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

A1 f is locally Lipschitz; A2 $\int_0^1 \int_{\mathbb{R}^d} |f(t,x)| \pi_t(x) \, dx \, dt < \infty$; Eulerian Liouville PDE \iff Lagrangian ODE

• Set $\tilde{\pi}_t = \pi_t$, for $t \in [0, 1]$ and solve Liouville equation

$$-\nabla \cdot (\pi_t f) = \partial_t \pi_t, \quad (L)$$

for a drift f... but not all solutions will work!

• Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

A1 f is locally Lipschitz; A2 $\int_0^1 \int_{\mathbb{R}^d} |f(t,x)| \pi_t(x) \, dx \, dt < \infty$; Eulerian Liouville PDE \iff Lagrangian ODE

• Define **flow transport problem** as solving Liouville (*L*) for *f* that satisfies [A1] & [A2]

Ill-posedness and regularization

• Under-determined: consider $\pi_t = \mathcal{N}((0,0), I_2)$ for $t \in [0,1]$,

$$f(x_1, x_2) = (0, 0)$$
 and $f(x_1, x_2) = (-x_2, x_1)$

are both solutions

Ill-posedness and regularization

• Under-determined: consider $\pi_t = \mathcal{N}((0,0), I_2)$ for $t \in [0,1]$,

$$f(x_1, x_2) = (0, 0)$$
 and $f(x_1, x_2) = (-x_2, x_1)$

are both solutions

• Regularization: seek minimal kinetic energy solution

$$\begin{aligned} \operatorname{argmin}_{f} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} |f(t,x)|^{2} \pi_{t}(x) \, dx \, dt : f \text{ solves Liouville} \right\} \\ \stackrel{EL}{\Longrightarrow} f^{*} = \nabla \varphi \text{ where } -\nabla \cdot (\pi_{t} \nabla \varphi) = \partial_{t} \pi_{t} \end{aligned}$$

Ill-posedness and regularization

• Under-determined: consider $\pi_t = \mathcal{N}((0,0), I_2)$ for $t \in [0,1]$,

$$f(x_1, x_2) = (0, 0)$$
 and $f(x_1, x_2) = (-x_2, x_1)$

are both solutions

• Regularization: seek minimal kinetic energy solution

$$\begin{aligned} \operatorname{argmin}_{f} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} |f(t,x)|^{2} \pi_{t}(x) \, dx \, dt : f \text{ solves Liouville} \right\} \\ \stackrel{EL}{\Longrightarrow} f^{*} &= \nabla \varphi \text{ where } -\nabla \cdot (\pi_{t} \nabla \varphi) = \partial_{t} \pi_{t} \end{aligned}$$

 Analytical solution available when distributions are (mixtures of) Gaussians (Reich, 2012)

Flow transport problem on ${\mathbb R}$

• Minimal kinetic energy solution

$$f(t,x) = \frac{-\int_{-\infty}^{x} \partial_t \pi_t(u) \, du}{\pi_t(x)}$$

Flow transport problem on ${\mathbb R}$

• Minimal kinetic energy solution

$$f(t,x) = \frac{-\int_{-\infty}^{x} \partial_t \pi_t(u) \, du}{\pi_t(x)}$$

• Checking Liouville

$$-\nabla \cdot (\pi_t f) = \partial_x \int_{-\infty}^x \partial_t \pi_t(u) \, du = \partial_t \pi_t(x)$$

Flow transport problem on $\mathbb R$

• Minimal kinetic energy solution

$$f(t,x) = \frac{-\int_{-\infty}^{x} \partial_t \pi_t(u) \, du}{\pi_t(x)}$$

• Checking Liouville

$$-\nabla \cdot (\pi_t f) = \partial_x \int_{-\infty}^x \partial_t \pi_t(u) \, du = \partial_t \pi_t(x)$$

A1 For f to be **locally Lipschitz**, assume

$$\pi_0, L \in C^1(\mathbb{R}, \mathbb{R}_+) \Longrightarrow f \in C^1([0, 1] \times \mathbb{R}, \mathbb{R})$$

Flow transport problem on ${\mathbb R}$

• Minimal kinetic energy solution

$$f(t,x) = \frac{-\int_{-\infty}^{x} \partial_t \pi_t(u) \, du}{\pi_t(x)}$$

• Checking Liouville

$$-\nabla \cdot (\pi_t f) = \partial_x \int_{-\infty}^x \partial_t \pi_t(u) \, du = \partial_t \pi_t(x)$$

A1 For f to be **locally Lipschitz**, assume

$$\pi_0, L \in C^1(\mathbb{R}, \mathbb{R}_+) \Longrightarrow f \in C^1([0, 1] \times \mathbb{R}, \mathbb{R})$$

A2 For integrability of $\int_0^1 \int_{\mathbb{R}^d} |f(t,x)| \pi_t(x) \, dx \, dt < \infty$, necessarily

$$|\pi_t f|(t,x) = \left|\int_{-\infty}^x \partial_t \pi_t(u) \, du\right| \to 0 \text{ as } |x| \to \infty$$

since $\int_{-\infty}^{\infty} \partial_t \pi_t(u) \, du = 0$

Flow transport problem on $\ensuremath{\mathbb{R}}$

• Minimal kinetic energy solution

$$f(t,x) = \frac{-\int_{-\infty}^{x} \partial_t \pi_t(u) \, du}{\pi_t(x)}$$

• Checking Liouville

$$-\nabla \cdot (\pi_t f) = \partial_x \int_{-\infty}^x \partial_t \pi_t(u) \, du = \partial_t \pi_t(x)$$

A1 For f to be locally Lipschitz, assume

$$\pi_0, L \in C^1(\mathbb{R}, \mathbb{R}_+) \Longrightarrow f \in C^1([0, 1] \times \mathbb{R}, \mathbb{R})$$

A2 For integrability of $\int_0^1 \int_{\mathbb{R}^d} |f(t,x)| \pi_t(x) \, dx \, dt < \infty$, necessarily

$$|\pi_t f|(t,x) = \left|\int_{-\infty}^x \partial_t \pi_t(u) \, du\right| o 0 \text{ as } |x| \to \infty$$

since $\int_{-\infty}^{\infty} \partial_t \pi_t(u) \, du = 0$ • **Optimality**: $f = \nabla \varphi$ holds trivially • Re-write solution as

$$f(t,x) = \frac{\lambda'(t)I_t \left\{F_t(x) - I_t^x/I_t\right\}}{\pi_t(x)}$$

where $I_t^{\times} = \mathbb{E}_{\pi_t}[\mathbbm{1}_{(-\infty, \times]} \log L(X_t)]$ and F_t is CDF of π_t

• Re-write solution as

$$f(t,x) = \frac{\lambda'(t)I_t \left\{F_t(x) - I_t^x/I_t\right\}}{\pi_t(x)}$$

where $I_t^{\times} = \mathbb{E}_{\pi_t}[\mathbb{1}_{(-\infty, \times]} \log L(X_t)]$ and F_t is CDF of π_t

• **Speed** is controlled by $\lambda'(t)$ and $\pi_t(x)$

• Re-write solution as

$$f(t,x) = \frac{\lambda'(t)I_t\left\{F_t(x) - I_t^x/I_t\right\}}{\pi_t(x)}$$

where $I_t^{\times} = \mathbb{E}_{\pi_t}[\mathbbm{1}_{(-\infty, \times]} \log L(X_t)]$ and F_t is CDF of π_t

- **Speed** is controlled by $\lambda'(t)$ and $\pi_t(x)$
- Sign is given by difference between $F_t(x)$ and $I_t^{\times}/I_t \in [0,1]$

• Multivariate solution for d = 3

$$\begin{aligned} (\pi_t f_1)(t, x_{1:3}) &= -\int_{-\infty}^{x_1} \partial_t \pi_t(u_1, x_2, x_3) \, du_1 \\ &+ g_1(t, x_1) \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, x_2, x_3) \, du_1 \\ (\pi_t f_2)(t, x_{1:3}) &= -g_1'(t, x_1) \int_{-\infty}^{\infty} \int_{-\infty}^{x_2} \partial_t \pi_t(u_1, u_2, x_3) \, du_{1:2} \\ &+ g_1'(t, x_1) g_2(t, x_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, u_2, x_3) \, du_{1:2} \\ (\pi_t f_3)(t, x_{1:3}) &= -g_1'(t, x_1) g_2'(t, x_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{x_3} \partial_t \pi_t(u_1, u_2, u_3) \, du_{1:3} \end{aligned}$$

where $g_1,g_2\in C^2([0,1] imes\mathbb{R},[0,1])$

• Checking Liouville

$$\begin{aligned} \partial_{x_1}(\pi_t f_1)(t, x_{1:3}) &= -\partial_t \pi_t(x_1, x_2, x_3) \\ &+ g_1'(t, x_1) \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, x_2, x_3) \, du_1 \\ \partial_{x_2}(\pi_t f_2)(t, x_{1:3}) &= -g_1'(t, x_1) \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, x_2, x_3) \, du_{1:2} \\ &+ g_1'(t, x_1) g_2'(t, x_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, u_2, x_3) \, du_{1:2} \\ \partial_{x_3}(\pi_t f_3)(t, x_{1:3}) &= -g_1'(t, x_1) g_2'(t, x_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, u_2, x_3) \, du_{1:2} \end{aligned}$$

• Checking Liouville

$$\begin{split} \partial_{x_1}(\pi_t f_1)(t, x_{1:3}) &= -\partial_t \pi_t(x_1, x_2, x_3) \\ &+ g_1'(t, x_1) \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, x_2, x_3) \, du_1 \\ \partial_{x_2}(\pi_t f_2)(t, x_{1:3}) &= -g_1'(t, x_1) \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, x_2, x_3) \, du_{1:2} \\ &+ g_1'(t, x_1) g_2'(t, x_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, u_2, x_3) \, du_{1:2} \\ \partial_{x_3}(\pi_t f_3)(t, x_{1:3}) &= -g_1'(t, x_1) g_2'(t, x_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \partial_t \pi_t(u_1, u_2, x_3) \, du_{1:2} \end{split}$$

• Taking divergence gives telescopic sum

$$-\nabla \cdot (\pi_t f)(t, x_{1:3}) = -\sum_{i=1}^3 \partial_{x_i}(\pi_t f_i)(t, x_{1:3}) = \partial_t \pi_t(x_{1:3})$$

A1 For f to be **locally Lipschitz**, assume

 $\pi_0, L \in C^1(\mathbb{R}^d, \mathbb{R}_+) \Longrightarrow f \in C^1([0,1] \times \mathbb{R}^d, \mathbb{R}^d)$

A1 For f to be locally Lipschitz, assume

$$\pi_0, L \in C^1(\mathbb{R}^d, \mathbb{R}_+) \Longrightarrow f \in C^1([0,1] imes \mathbb{R}^d, \mathbb{R}^d)$$

A2 For **integrability** of $\int_0^1 \int_{\mathbb{R}^d} |f(t,x)| \pi_t(x) \, dx \, dt < \infty$, necessarily $|\pi_t f|(t,x)| \to 0$ as $|x| \to \infty$

if $\{g_i\}$ are **non-decreasing** functions with **tail behaviour**

$$egin{array}{lll} g_i(t,x_i) &
ightarrow 0 & ext{ as } x_i
ightarrow -\infty, \ g_i(t,x_i) &
ightarrow 1 & ext{ as } x_i
ightarrow \infty \end{array}$$

A1 For f to be **locally Lipschitz**, assume

$$\pi_0, L \in C^1(\mathbb{R}^d, \mathbb{R}_+) \Longrightarrow f \in C^1([0,1] imes \mathbb{R}^d, \mathbb{R}^d)$$

A2 For integrability of $\int_0^1 \int_{\mathbb{R}^d} |f(t,x)| \pi_t(x) \, dx \, dt < \infty$, necessarily $|\pi_t f|(t,x)| \to 0 \text{ as } |x| \to \infty$

if $\{g_i\}$ are **non-decreasing** functions with **tail behaviour**

$$egin{array}{lll} g_i(t,x_i) o 0 & ext{ as } x_i o -\infty, \ g_i(t,x_i) o 1 & ext{ as } x_i o \infty \end{array}$$

Choosing g_i(t, x_i) = F_t(x_i) as marginal CDF of π_t allows f to decouple if distributions are independent

• Solution involved integrals of **increasing dimension** as it tracks **increasing conditional** distributions

$$\pi_t(x_1|x_{2:d}), \pi_t(x_2|_{3:d}), \ldots, \pi_t(x_d), \quad x_i \in \mathbb{R}$$

• Solution involved integrals of **increasing dimension** as it tracks **increasing conditional** distributions

$$\pi_t(x_1|x_{2:d}), \pi_t(x_2|_{3:d}), \ldots, \pi_t(x_d), \quad x_i \in \mathbb{R}$$

• Trade-off accuracy for computational tractability: track **full conditional** distributions

$$\pi_t(x_i|x_{-i}), \quad x_i \in \mathbb{R}^{d_i}$$

• Solution involved integrals of **increasing dimension** as it tracks **increasing conditional** distributions

$$\pi_t(x_1|x_{2:d}), \pi_t(x_2|_{3:d}), \ldots, \pi_t(x_d), \quad x_i \in \mathbb{R}$$

• Trade-off accuracy for computational tractability: track **full conditional** distributions

$$\pi_t(x_i|x_{-i}), \quad x_i \in \mathbb{R}^{d_i}$$

• System of Liouville equations

$$-\nabla_{x_i} \cdot \left\{ \pi_t(x_i|x_{-i})\tilde{f}_i(t,x) \right\} = \partial_t \pi_t(x_i|x_{-i}),$$

each defined on $(0,1) imes \mathbb{R}^{d_i}$

• For $d_i = 1$, solution is

$$\tilde{f}_i(t,x) = \frac{-\int_{-\infty}^{x_i} \partial_t \pi_t(u_i|x_{-i}) \, du_i}{\pi_t(x_i|x_{-i})}$$

• For $d_i = 1$, solution is

$$\tilde{f}_i(t,x) = \frac{-\int_{-\infty}^{x_i} \partial_t \pi_t(u_i|x_{-i}) \, du_i}{\pi_t(x_i|x_{-i})}$$

• If $\pi_0, L \in C^1(\mathbb{R}^d, \mathbb{R}_+)$ and $\lim_{|x| \to \infty} L(x) = 0$, the ODE

$$dX_t = \tilde{f}(t, X_t)dt, \quad X_0 \sim \pi_0$$

admits a unique solution on [0, 1], referred to as Gibbs flow

• For $d_i = 1$, solution is

$$\tilde{f}_i(t,x) = \frac{-\int_{-\infty}^{x_i} \partial_t \pi_t(u_i|x_{-i}) \, du_i}{\pi_t(x_i|x_{-i})}$$

• If $\pi_0, L \in C^1(\mathbb{R}^d, \mathbb{R}_+)$ and $\lim_{|x| \to \infty} L(x) = 0$, the ODE

$$dX_t = \tilde{f}(t, X_t)dt, \quad X_0 \sim \pi_0$$

admits a unique solution on [0,1], referred to as Gibbs flow

For d_i > 1, can often exploit analytical tractability of π_t(x_i|x_{-i}) to solve for f̃_i(t, x); or apply multivariate extension

• For $d_i = 1$, solution is

$$\tilde{f}_i(t,x) = \frac{-\int_{-\infty}^{x_i} \partial_t \pi_t(u_i|x_{-i}) \, du_i}{\pi_t(x_i|x_{-i})}$$

• If $\pi_0, L \in C^1(\mathbb{R}^d, \mathbb{R}_+)$ and $\lim_{|x| \to \infty} L(x) = 0$, the ODE

$$dX_t = \tilde{f}(t, X_t)dt, \quad X_0 \sim \pi_0$$

admits a unique solution on [0,1], referred to as Gibbs flow

- For d_i > 1, can often exploit analytical tractability of π_t(x_i|x_{-i}) to solve for f̃_i(t, x); or apply multivariate extension
- Otherwise, analogous to Metropolis-within-Gibbs, **split into one dimensional components** and apply above

• Define local error

$$\varepsilon_t(x) = \left| \partial_t \pi_t(x) + \nabla \cdot (\pi_t(x)\tilde{f}(t,x)) \right|$$
$$= \left| \partial_t \pi_t(x) - \sum_{i=1}^p \partial_t \pi_t(x_i|x_{-i}) \pi_t(x_{-i}) \right|$$

• Define local error

$$arepsilon_t(x) = \left| \partial_t \pi_t(x) +
abla \cdot (\pi_t(x) \widetilde{f}(t, x))
ight|
onumber \ = \left| \partial_t \pi_t(x) - \sum_{i=1}^p \partial_t \pi_t(x_i | x_{-i}) \pi_t(x_{-i})
ight|$$

• Gibbs flow exploits local independence:

$$\pi_t(x) = \prod_{i=1}^p \pi_t(x_i) \Longrightarrow \varepsilon_t(x) = 0$$

• Define local error

$$arepsilon_t(x) = \left| \partial_t \pi_t(x) +
abla \cdot (\pi_t(x) ilde{f}(t, x))
ight|
onumber \ = \left| \partial_t \pi_t(x) - \sum_{i=1}^p \partial_t \pi_t(x_i | x_{-i}) \pi_t(x_{-i})
ight|$$

• Gibbs flow exploits local independence:

$$\pi_t(x) = \prod_{i=1}^p \pi_t(x_i) \Longrightarrow \varepsilon_t(x) = 0$$

• If Gibbs flow induces $\{\tilde{\pi}_t\}_{t\in[0,1]}$ with $\tilde{\pi}_0=\pi_0$

$$\|\tilde{\pi}_t - \pi_t\|_{L^2}^2 \leq t \int_0^t \|\varepsilon_u\|_{L^2}^2 \, du \, \cdot \, \exp\left(1 + \int_0^t \|\nabla \cdot \tilde{f}(u, \cdot)\|_\infty \, du\right)$$

Numerical integration of Gibbs flow

• Previously, we considered the forward Euler scheme

$$Y_m = Y_{m-1} + \Delta t \, \tilde{f}(t_{m-1}, Y_{m-1}) = \Phi_m(Y_{m-1})$$

Numerical integration of Gibbs flow

Previously, we considered the forward Euler scheme

$$Y_m = Y_{m-1} + \Delta t \, \tilde{f}(t_{m-1}, Y_{m-1}) = \Phi_m(Y_{m-1})$$

 To get Law(Y_m), we need Jacobian determinant of Φ_m which typically costs O(d³) for d_i = 1

Numerical integration of Gibbs flow

Previously, we considered the forward Euler scheme

$$Y_m = Y_{m-1} + \Delta t \, \tilde{f}(t_{m-1}, Y_{m-1}) = \Phi_m(Y_{m-1})$$

- To get Law(Y_m), we need Jacobian determinant of Φ_m which typically costs O(d³) for d_i = 1
- In contrast, this scheme mimicking a systematic Gibbs scan

$$Y_m[i] = Y_{m-1}[i] + \Delta t \,\tilde{f}(t_{m-1}, Y_m[1:i-1], Y_{m-1}[i:\rho])$$

$$Y_m = \Phi_{m,d} \circ \cdots \circ \Phi_{m,1}(Y_{m-1})$$

is also order one, and costs O(d)

Mixture modelling example

• Lack of identifiability induces π on \mathbb{R}^4 with 4! = 24 well-separated and identical modes
Mixture modelling example

- Lack of identifiability induces π on \mathbb{R}^4 with 4! = 24 well-separated and identical modes
- Gibbs flow approximation

Jeremy Heng

21/

Mixture modelling example

• Proportion of particles in each of the 24 modes

Mixture modelling example

• Proportion of particles in each of the 24 modes

• Pearson's Chi-squared test for uniformity gives p-value of 0.85

• Effective sample size % in dimension d

- Effective sample size % in dimension d
- AIS: AIS with HMC moves

- Effective sample size % in dimension d
- AIS: AIS with HMC moves
- GF-SIS: Gibbs flow

- Effective sample size % in dimension d
- AIS: AIS with HMC moves
- GF-SIS: Gibbs flow
- GF-AIS: Gibbs flow with HMC moves

• Heng, J., Doucet, A., & Pokern, Y. (2015). Gibbs Flow for Approximate Transport with Applications to Bayesian Computation. arXiv preprint arXiv:1509.08787.

• Updated article and R package coming soon!