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Take-home message

I Donsker & Varadhan: Monte Carlo sampling of nonnegative
random variables has an equivalent variational formulation.

I For path-dependent random variables the variational
formulation boils down to an optimal control problem.

I The numerical toolbox for solving optimal control problems
is different from the Monte Carlo toolbox.



Motivation: conformation dynamics of biomolecules

[Noé et al, PNAS, 2009]



Motivation: conformation dynamics of biomolecules

Given a Markov process X = (Xt)t≥0, discrete or continuous in
time, we want to estimate probabilities p � 1, such as

p = P (τ < T ) ,

or rates, such as
k = (E[τ ])−1 ,

with τ some random stopping time, or free energies

F = − logE
[
e−W

]
,

where W is some functional of X .
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Illustrative example: bistable system

I Overdamped Langevin equation

dXt = −∇V (Xt)dt +
√

2εdBt

I MC estimator of pε = P(τ < T )

p̂nε =
1

n

n∑

i=1

1{τi<T}

I Small noise asymptotics (Kramers)

lim
ε→0

ε logE[τ ] = ∆V
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Illustrative example, cont’d

I Relative error of the MC estimator

δε =

√
Var[p̂nε ]

E
[
p̂nε
]

I Varadhan’s large deviations principle

E
[
(p̂nε )2

]
� (E

[
p̂nε
]
)2 , ε small.

I Unbounded relative error as ε→ 0

lim
ε→0

δε =∞
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Optimal change of measure: zero variance

Pick another probability measure Q with likelihood ratio

ϕ =
dQ

dP
> 0 ,

under which the rare event is no longer rare, such that

P(τ < T ) = E
[
1{τ<T}

]
≈ 1

n

n∑

i=1

1{τi<T}ϕ
−1(τi ).

with τi now being independent draws from Q.

Optimal (zero-variance) change of measure is infeasible:

ϕ∗ =
dQ∗

dP
=

1{τ<T}

E
[
1{τ<T}

] .
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Change of measure from nonequilibrium forcing

Single molecule pulling experiments, figure courtesy of G. Hummer, MPI Frankfurt

In vitro/in silico free energy calculation from forcing:

F = − logE
[
e−W

]
.

Forcing generates a “nonequilibrium” path space measure Q with
typically suboptimal likelihood quotient ϕ = dQ/dP.

[Schlitter, J Mol Graph, 1994], [Hummer & Szabo, PNAS, 2001], Schulten & Park, JCP, 2004], ...



Variational characterization of free energy

Theorem (Donsker & Varadhan)

For any bounded and measurable function W it holds

− logE
[
e−W

]
= min

Q�P
{EQ [W ] + KL(Q,P)}

where KL(Q,P) ≥ 0 is the relative entropy between Q and P:

KL(Q,P) =





∫
log

(
dQ

dP

)
dQ if Q � P

∞ otherwise

Sketch of proof: Let ϕ = dQ/dP. Then

− log

∫
e−W dP = − log

∫
e−W−log ϕdQ ≤

∫
(W + logϕ) dQ

[Boué & Dupuis, LCDS Report #95-7, 1995], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but different. . .



Set-up: uncontrolled (“equilibrium”) diffusion process

Let X = (Xs)s≥0 be a diffusion process on Rn,

dXs = b(Xs , s)ds + σ(Xs)dBs , Xt = x ,

and

W (X ) =

∫ τ

t
f (Xs , s) ds + g(Xτ ) ,

for suitable functions f , g and a a.s. finite stopping time τ <∞.

Aim: Estimate the path functional

ψ(x , t) = E
[
e−W (X )

]



Set-up: controlled (“nonequilibrium”) diffusion process

Now given a controlled diffusion process X u = (X u
s )s≥0,

dX u
s = (b(X u

s , s) + σ(X u
s )us)ds + σ(X u

s )dBs , X u
t = x ,

and a probability Q � P on C ([0,∞)) with explicitly computable
likelihood ratio ϕ = dQ/dP (via Girsanov’s Theorem).

Now: Estimate the reweigthed path functional

E
[
e−W (X )

]
= E

[
e−W (X u)(ϕ(X u))−1

]



Variational characterization of free energies, cont’d

Theorem (H, 2012/2017)

Technical details aside, let u∗ be a minimiser of the cost functional

J(u) = E
[
W (X u) +

1

2

∫ τ

t
|us |2 ds

]

under the controlled dynamics

dX u
s = (b(X u

s , s) + σ(X u
s )us)ds + σ(X u

s )dBs , X u
t = x .

The minimiser is unique with J(u∗) = − logψ(x , t). Moreover,

ψ(x , t) = e−W (X u∗ )(ϕ(X u∗))−1 (a.s.) .

[H & Schütte, JSTAT, 2012], [Schütte et al, Math Prog, 2012], [H et al, Entropy, 2017]



Illustrative example, cont’d

Probability of hitting the set C ⊂ R before time T :

− logP(τ ≤ T ) = min
u

E
[

1

4

∫ τ∧T

0
|ut |2 dt − log 1∂C (X u

τ∧T )

]
,

with τ denoting the first hitting time of C under the dynamics

dX u
t = (ut −∇V (X u

t )) dt +
√

2ε dBt

.
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[Zhang et al, SISC, 2014], [Richter, MSc thesis, 2016], [H et al, Nonlinearity, 2016]



A few remarks

I The Theorem is a variant of the Donsker–Varadhan principle
can be proved by both probabilistic and PDE arguments.

I If σσT > 0 the optimal control has gradient form, i.e.

u∗t = −2σ(X u∗
t )T∇F (X u∗

t , t) ,

with F (x , t) = min{J(u) : X u
t = x} being the value function.

I NFL Theorem: F = − logψ solves a nonlinear HJB equation,

−∂F
∂t

+ H
(
x ,F ,∇F ,∇2F

)
= 0 .

(Remark: In some cases F = F (x) will be stationary.)

I Generalizations include degenerate diffusions, Markov chains,
infinite time-horizon, non-exponential functionals . . . .

[H et al, Entropy, 2014]; cf. [Fleming, SIAM J Control, 1978], [Dupuis & Wang, Stoch, 2004]



Related work (non-exhaustive)

I Risk-sensitive control and dynamic games: [Whittle, Eur J
Oper Res, 1994], [James et al, IEEE TAC, 1994], [Dai Pra et
al, Math Control Signals Systems, 1996], . . .

I Large deviations and control: [Fleming, Appl Math Optim,
1977], [Fleming & Sheu, Ann Probab, 1997], [Pavon, Appl
Math Optim, 1989], . . .

I Importance sampling of small noise diffusions: [Dupuis &
Wang, Stochastics, 2004], [Dupuis & Wang, Math Oper Res,
2007], [Vanden-Eijnden & Weare, CPAM, 2012], . . .

I Extension to multiscale systems: [Spiliopoulos et al., SIAM
MMS, 2012], [Hartmann et al, JCD, 2014], [Hartmann et al,
Probab Theory Rel F, 2018], . . .
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Two key facts about our control problem



Fact #1

Assuming that σσT > 0 has a uniformly bounded inverse, the
optimal control is a feedback law that can be represented as

u∗t = σ(X u
t )
∞∑

i=1

ci∇φi (X u
t , t) ,

with coefficients ci ∈ R and basis functions φi ∈ C 1,0(Rn, [0,∞)).

Proof: HJB equation and Itô’s formula.



Fact #2

Letting Q denote the probability (path) measure on C ([0,∞))
associated with the tilted dynamics X u, it holds that

J(u)− J(u∗) = KL(Q,Q∗)

with Q∗ = Q(u∗) and

KL(Q,Q∗) =





∫
log

(
dQ

dQ∗

)
dQ if Q � Q∗

∞ otherwise

denoting the relative entropy (or: Kullback-Leibler divergence)
between Q and Q∗.

Proof: Zero-variance property of Q∗ = Q(u∗).



Cross-entropy method for diffusions

Idea: seek a minimiser of J among all controls of the form

ût = σ(X u
i )

M∑

i=1

ci∇φi (X u
t , t) , φi ∈ (Rn, [0,∞)) .

and minimise the Kullback-Leibler divergence

S(µ) = KL(µ,Q∗)

over all candidate probability measures of the form µ = µ(û).

Remark: unique minimiser is dQ∗ = eF−W dP = ψ−1e−W dP.

[Zhang et al, SISC, 2014]; cf. [Oberhofer & Dellago, CPC, 2008]



Unfortunately, . . .



Cross-entropy method for diffusions, cont’d

. . . this is a nasty, non-convex minimisation problem.

Feasible cross-entropy minimisation

Minimisation of the relaxed functional KL(Q∗, ·) is equivalent to
cross-entropy minimisation: minimise

CE (µ) = −
∫ (

log
dµ

dP

)
dQ∗

dP
dP

over all admissible µ = µ(û), with dQ∗ ∝ e−W dP.

Note: KL(µ,Q∗)=0 iff KL(Q∗, µ) = 0, which holds iff µ = Q∗.



Some remarks: algorithmic issues

I The cross-entropy minimisation can be recast as

max
c∈RM

E
[
logϕ(û)e−W (X û)

]

where the log likelihood ratio logϕ(û) is quadratic in the
unknowns c = (c1, . . . , cM) and can be explicitly computed.

I The necessary optimality conditions are of the form

Ac = ζ

with coefficients A = (Aij), ζ = (ζ1, . . . , ζM) that are
computable by Monte Carlo.

I In practice, annealing and clever choice of basis functions φi
(e.g. global or local) greatly enhances convergence.

[Rubinstein & Kroese, Springer, 2004], [Zhang et al, SISC, 2014], [Badowski, PhD thesis, 2016]



Example I



Computing the mean first passage time (n = 1)

Minimise

J(u;α) = E
[
ατu +

1

4

∫ τu

0
|ut |2 dt

]

with τu = inf{t > 0: X u
t ∈ [−1.1,−1]} and the dynamics

dX u
t = (ut −∇V (X u

t )) dt + 2−1/2 dBt
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Skew double-well potential V and MFPT of the set S = [−1.1,−1] from FEM reference solution).



Computing the mean first passage time, cont’d

Gradient descent approach using a parametric ansatz

c(x) =
10∑

i=1

ci∇φi (x) , φi : equispaced Gaussians
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Biasing potential V + 2F and unbiased estimate of the limiting MFPT.

cf. [H & Schütte, JSTAT, 2012], [Richter, MSc thesis, 2016]



Example II (suboptimal control)



Conformational transition of butane in water (n = 16224)

Probability of making a gauche-trans transition before time T :

− logP(τC ≤ T ) = min
u

E
[

1

4

∫ τ

0
|ut |2 dt − log 1∂C (X u

τ )

]
,

with τ = min{τC ,T} and τC denoting the first exit time from the
gauche conformation “C” with smooth boundary ∂C

3
2

1

4

4’

gauche

trans

Table 4.5: Results for butane dissolved in water: The probability P(⌧  T ) is calculated by the

important sampling procedure with control acting on the dihedral angle only; see the text for

more details. The column “Error” denotes the statistical uncertainty of estimating the probablity

P(⌧  T ). If the trajectories are statistically independent, the expected error is
p

Var/MIS ,

where MIS is the number of trajectories used. If the trajectories are not independent, the error

can be estimated by the block average method [9]. The meaning of the other columns are the same

as Tab. 4.2; here, the accelaration index has to be computed as I = VarMCMMC/(VarISMIS)

since the numbers of trajectories used in the IS and MC procedures are di↵erent.

T [ps] P(⌧  T ) Error Var Accel. I Traj. Usage

0.1 4.30 ⇥ 10�5 0.77 ⇥ 10�5 3.53 ⇥ 10�6 42.5 0.4%

0.2 1.21 ⇥ 10�3 0.11 ⇥ 10�3 2.50 ⇥ 10�4 26.0 5.4%

0.5 6.85 ⇥ 10�3 0.38 ⇥ 10�3 2.88 ⇥ 10�3 13.0 8.3%

1.0 1.74 ⇥ 10�2 0.08 ⇥ 10�2 1.21 ⇥ 10�2 7.0 12.3%

Table 4.6: Results for butane dissolved in water: Brute force / standard Monte Carlo computa-

tions of P(⌧  T ) without any important sampling.

T [ps] P(⌧  T ) Error Var Accel. Traj. Usage

0.1 9.00 ⇥ 10�5 3.00 ⇥ 10�5 9.00 ⇥ 10�5 1.0 0.009%

0.2 1.29 ⇥ 10�3 0.11 ⇥ 10�3 1.29 ⇥ 10�3 1.0 0.1%

0.5 7.41 ⇥ 10�3 0.27 ⇥ 10�3 7.36 ⇥ 10�3 1.0 0.7%

1.0 1.78 ⇥ 10�2 0.04 ⇥ 10�2 1.75 ⇥ 10�2 1.0 1.8%

molecules are removed. This is done because the vacuum simulation is much cheaper than the

in-water simulation, and practically, the control calculated in the corresponding vacuum systems

perform well enough in the in-water system, because we find, when tested, no further iteration is

needed to refine the control. In the vacuum system, we find probabilities P(⌧  T ) = 2.16⇥10�2,

8.66 ⇥ 10�3, 1.48 ⇥ 10�3 and 6.13 ⇥ 10�5 for T = 1.0, 0.5, 0.2 and 0.1 ps, respectively. These

values do not significantly di↵er from those of the dissolved system (see the second column of

Tab. 4.5). Noticing that butane is invariant with respect to transitional and rotational movement,

the above observations indicate that the transitional, rotational DOFs and the water structure

do not play a dominant role in the conformational change of butane, and the definition of control

only as a function as the dihedral angle, and the computation of control in the vacuum system

are reasonable choices.

The Fig. 4.5 the e↵ective dihedral angle energy is plotted being defined as the original

dihedral energy V�(�) plus the control Vctrl(�). We only show the e↵ective energy in the range

[40�, 150�], because the initial states of the trajectories are located in the range [40�, 80�], and the

trajectories are stopped when they reach � = 150�. For an easy comparison, all e↵ective energies

are shifted by a constant, so that they are of value zero at � = 150�. It clear that for smaller T

values, the control applied is stronger. The resulting probabilities P(⌧  T ) calculated by the

important sampling procedure are summarized in Tab. 4.5, which is consistent with Tab. 4.6 that

presents the brute force results (calculated from MMC = 100, 000 trajectoies). The consistency

16

IS of butane in a box of 900 water molecules (SPC/E, GROMOS force field) using cross-entropy minimisation

[Zhang et al, SISC, 2014], [H et al, Nonlinearity, 2016], [H et al, PTRF, 2018]



Alternatives to cross-entropy minimisation

I Minimise cost functional J(û(c)) by gradient descent:

c(n+1) = c(n) − hn∇J
(
û
(
c(n)

))
,

with hn ↘ 0 as n→∞.

I Semi-explicit discretisation of FBSDE by least-squares MC

dXs = b(Xs , s)ds + σ(Xs)dBs , Xt = x

dYs = h(Xs ,Ys ,Zs)ds + Zs · dBs , YT = g(XT ) ,

where t ≤ s ≤ T and

F (x , t) = Yt (as a function of the initial value x)

I Approximate policy iteration

[H & Schütte, JSTAT, 2012], [Lie, PhD thesis, 2016], [Kebiri, Neureither & H, Proc IHP, 2018]



Take-home message (reloaded)

I Adaptive importance sampling scheme based on dual
variational formulation; resulting control problem features
short trajectories with minimum variance estimators.

I Variational problem: find the optimal perturbation by
cross-entropy minimisation, gradient descent or the alike.

I Approach can (or better: should) be combined with
dimension reduction prior to optimization.



Thank you for your attention!
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