Model-Acentric, Focused Bayesian Prediction

David Frazier, Ruben Loaiza Maya and Gael Martin Department of Econometrics and Business Statistics Monash University, Melbourne BIRS workshop, Oaxaca, Nov. 2018 Note that this is a modified version of the talk given

Bayesian Prediction

• Distribution of interest is:

$$p(y_{T+1}|y_{1:T}) = \int_{\theta} p(y_{T+1}, \theta|y_{1:T}) d\theta$$
$$= \int_{\theta} p(y_{T+1}|y_{1:T}, \theta) p(\theta|y_{1:T}) d\theta$$
$$= E_{\theta|\mathbf{y}} [p(y_{T+1}|y_{1:T}, \theta)]$$

- (Marginal) predictive = expect. of conditional predictive
- Conditional predictive reflects the assumed DGP
- As does the **posterior**: $p(\theta|y_{1:T}) \propto p(y_{1:T}|\theta) \times p(\theta)$

Implementing Bayesian Prediction

- In the usual case where $E_{\theta|y_{1:T}}[p(y_{T+1}|y_{1:T},\theta)]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|y_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)
- And estimate $p(y_{T+1}|y_{1:T})$ as

either:

$$\widehat{p}(y_{T+1}|\mathbf{y}_{1:T}) = \frac{1}{M} \sum_{i=1}^{M} p(y_{T+1}|y_{1:T}, \boldsymbol{\theta}^{(i)})$$

• or: $\hat{p}(y_{T+1}|y_{1:T})$ constructed from draws of $y_{T+1}^{(i)}$ simulated from $p(y_{T+1}|y_{1:T}, \boldsymbol{\theta}^{(i)})$

- i.e. MCMC \Rightarrow exact Bayesian prediction
 - (up to simulation error)

Achilles Heels!

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - \Rightarrow **exact** Bayesian prediction not feasible
 - Frazier, Maneesoonthorn, Martin and McCabe: "Approximate Bayesian Forecasting", IJF, 2018
- What happens when we acknowledge that the DGP used to construct p(y_{T+1}|y_{1:T}) misspecified?
 - This impinges on $p(y_{T+1}|y_{1:T})$ via its two components:

$$p(y_{\mathcal{T}+1}|y_{1:\mathcal{T}}) = \int_{ heta} p(y_{\mathcal{T}+1}|y_{1:\mathcal{T}}, oldsymbol{ heta}) p(oldsymbol{ heta}|y_{1:\mathcal{T}}) doldsymbol{ heta}$$
 and

- The conditional predictive: $p(y_{T+1}|y_{1:T}, \theta)$
- and $p(\theta|y_{1:T}) \propto p(y_{1:T}|\theta) \times p(\theta)$
- In what sense does $p(y_{T+1}|y_{1:T})$ remain the gold standard?

A New Paradigm for Bayesian Prediction

- Appropriate for the realistic setting in which the **true DGP is unknown**
- The ideas are still evolving!
- Define ${\cal P}$ as the class of ${\rm conditional\ predictives}$ that we believe ${\rm could\ have\ generated\ the\ data}$
- With elements:

$$P(y_{T+1}|y_{1:T}, \cdot) \in \mathcal{P}$$

• where $P(y_{T+1}|y_{1:T}, \cdot)$ conditions on data: $y_{1:T}$, and on some unknowns

A New Paradigm for Bayesian Prediction

- In principle, ${\cal P}$ may be a class of:
 - distributions, $P(y_{T+1}|y_{1:T}, \theta)$ say, associated with a **given** parametric model
 - weighted combinations of predictives associated with **different parametric** models
 - non-parametric conditional distributions
- Define a prior over the elements of $\mathcal{P}: \Pi[P(y_{T+1}|y_{1:T}, \cdot)]$
- The essence of the idea:

• Update the prior:

$$\Pi[P(y_{T+1}|y_{1:T}, \cdot)]$$

to a posterior:

$$\Pi[P(y_{T+1}|y_{1:T}, \cdot)|y_{1:T}]$$

- \bullet According to **predictive performance** over some 'test' set, ${\cal T}$
- $\Rightarrow \Pi[P(y_{T+1}|y_{1:T}, \cdot)|y_{1:T}]$ is 'focused' on elements of \mathcal{P} with high predictive accuracy \Leftrightarrow small loss
- Different (problem-specific) measures of loss ⇒ different posteriors

- First attempt....
- Define a proper scoring rule: $S(P(y_{T+1}|y_{1:T}, \cdot), y_{T+1})$
- with expectation, under the **truth**, $F(y_{T+1}|y_{1:T})$, as:

$$\mathcal{S}(\mathsf{P},\mathsf{F}) = \mathbb{E}_{\mathsf{F}}\left[S(\mathsf{P}(y_{\mathsf{T}+1}|y_{1:\mathsf{T}},\boldsymbol{\cdot}),y_{\mathsf{T}+1})\right]$$

- The map $P \mapsto -\mathcal{S}(P, F)$ defines a loss function over the models in \mathcal{P}
- \bullet Aim is to focus on the elements of ${\cal P}$ that $minimize\ this\ loss$

- Partition the sample: $y_1, y_2, ..., y_T$ into:
 - A training set: $\mathcal{D} = \{y_t; 1 \le t \le \tau\}$
 - A test set: $T = \{y_t; \tau + 1 \le t \le \tau + n = T\}$
- Fit P on $\mathcal{D} \Rightarrow \widehat{P}(y_{t+1}|y_{1:t}, \cdot)$ (when necessary)
- Use \mathcal{T} (and **expanding** \mathcal{D}) to **compute**:

$$S_n(P, F) = \frac{1}{n} \sum_{i=0}^{n-1} S(\widehat{P}(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \cdot), y_{(\tau+i)+1})$$

• as an estimate of $\mathcal{S}(P, F)$

• Using short-hand:

$$P = P(y_{T+1}|y_{1:T}, \cdot) \in \mathcal{P}; \ F = F(y_{T+1}|y_{1:T});$$

• Simplest form of FBP Algorithm:

1. Draw
$$P^{i}$$
 from $\Pi[P]$, $i = 1, 2, ..., N$
2. Compute \widehat{P}^{i} using \mathcal{D} and P^{i}
3. Compute $s = S_{n}(\widehat{P}^{i}, F)$ over test set \mathcal{T}
3. For each $i = 1, 2, ..., N$ accept \widehat{P}^{i} if $s \ge \varepsilon_{n}$

• Different choices for $\varepsilon_n \Rightarrow$ different **aversion to loss**

Focused Bayesian Prediction

- This likelihood-free algorithm produces *i.i.d.* draws from a 'posterior' for P, given y_{1:T} : Π_{ε_n} [P|y_{1:T}]
- where the replacement of a **likelihood** function with an alternative **loss** function
- And hence the use of 'posterior'
- Is similar in spirit to Bissiri et al. (JRSS(B), 2016):
- "A general framework for updating belief distributions"
- But applied to **prediction** rather than **inference**

Focused Bayesian Prediction

- Further refinements certainly possible
- E.g. via addition of an approximate Bayesian computation (ABC) step
- \Rightarrow draws P^i (s.t. $s \ge \varepsilon_n$) are **weighted** according to their ability to produce **simulated** values (z_{T+1}) that '**match**' the **observed** values (y_{T+1}) in test period
- according the given score (or loss)
- or, maybe, according to an additional score (or loss)

- Theorem 1: 'Posterior' Concentration:
- Define:

$$\mathcal{P}^* = rg\max_{\mathcal{P}\in\mathcal{P}}\mathcal{S}(\mathcal{P},\mathcal{F}) ext{ with } arepsilon^* = \mathcal{S}(\mathcal{P}^*,\mathcal{F})$$

• For $\varepsilon_n \to \varepsilon^*$; $\delta_n \to 0$ (and under other conditions):

$$\prod_{\varepsilon_n} [|\mathcal{S}(\mathcal{P}, \mathcal{F}) - \mathcal{S}(\mathcal{P}^*, \mathcal{F})| > \delta_n |y_{1:\mathcal{T}}] \underset{n \to \infty}{\longrightarrow} 0$$

 ⇒ distribution of the expected score of P ∈ P concentrates onto the maximum expected score possible under F

• '**Posterior**' concentration (in terms of *P*) would then be defined as:

$$\Pi_{\varepsilon_n}[\rho\left(\mathsf{P},\mathsf{P}^*\right) > \delta_n|y_{1:T}] \xrightarrow[n \to \infty]{} 0$$

- For some functional metric, ρ , (like total variation)
- \Rightarrow **posterior** of *P* **concentrates onto** element of *P* that:
- maximizes the expected score \Leftrightarrow minimizes loss in ${\mathcal P}$
- Proof on the drawing board.....

- So the distribution of $\mathcal{S}(\mathsf{P},\mathsf{F})$ concentrates onto $\mathcal{S}(\mathsf{P}^*,\mathsf{F})$
- (\Rightarrow 'loosely speaking' that *P* concentrates onto *P*^{*})
- with P* determined by the choice of score (or loss) function, the choice of P, and by the true F
- How does the 'posterior' of *P* relate to the true *F*?

• Define:

$$E_{\varepsilon_n}[P|y_{1:T}] = \int_{\mathcal{P}} P d\Pi_{\varepsilon_n}[P|y_{1:T}]$$

= the 'posterior' mean of P

- Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$
- (a) If $F \in \mathcal{P}$ (i.e. when the **true predictive** is in the class) we **do** recover it: $\rho_{TV}^2 (E_{\varepsilon_n}[P|y_{1:T}], F) \xrightarrow[n \to \infty]{} 0$

• i.e. (squared) total variation distance of $E_{\varepsilon_n}[P|y_{1:T}]$ from the true predictive $\rightarrow 0$

- Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$
- (b) If $F \notin \mathcal{P}$ (so under **mis-specification**):

$$\lim_{n \to \infty} \rho_{TV} \left(E_{\varepsilon_n}[P|y_{1:T}], F \right) \le 2\rho_{Hellinger}(P^*, F)$$

- *P*^{*} = predictive distribution that maximizes the expected score ⇔ is closest to *F* in this sense
- ⇒ the bound is the (H) distance between F and the P* that is closest to F in this score
- Actual magnitude of the bound is (of course) affected by ${\cal P}$ and the chosen score (or loss)

Illustrative Example 1: Financial Asset Return

- Let $\ln S_t = \log$ of an asset price
- Let *P* define a class of parametric predictives, *P*_θ, associated with a stochastic volatility model

$$egin{aligned} d \ln S_t &= \sqrt{V_t} dB_t^{\mathcal{S}} \ dV_t &= (heta_1 - heta_2 V_t) \, dt + heta_3 \sqrt{V_t} dB_t^{v} \end{aligned}$$

- with $oldsymbol{ heta}=(heta_1, heta_2, heta_3)'$
- The true DGP, *F*, is a stochastic volatility model with random jumps:

$$d \ln S_t = \sqrt{V_t} dB_t^S + \underbrace{Z_t dN_t}_{=g(\theta_{0,4},\theta_{0,5}...)}$$
$$dV_t = (\theta_{0,1} - \theta_{0,2}V_t) dt + \theta_{0,3}\sqrt{V_t} dB_t^v$$
$$\bullet \ \theta_0 = (\theta_{0,1},\theta_{0,2},\theta_{0,3},...)' = \text{true parameter (vector)}$$

Exact but mis-specified predictive?

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional exact Bayesian predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?
- $p(\theta|y_{1:T})$ (under regul.) concentrates onto **pseudo-true** θ , θ^*
- where θ^* is close to θ_0 (in KL-based sense)

$$\bullet \Rightarrow$$

$$\underset{\mathcal{T}\rightarrow\infty}{\lim} p(y_{\mathcal{T}+1}|y_{1:\mathcal{T}}) = p(y_{\mathcal{T}+1}|y_{1:\mathcal{T}}, \boldsymbol{\theta}^*) = \textit{what}??$$

- P is misspecified
- $\theta^* \neq \theta_0$
- Minimizing KL divergence \equiv maximizing log score in sample
- No guarantee of out-of-sample performance
- In particular, with respect to some other score/loss
- FBF ensures (in principle) accurate *out-of-sample* performance according to **any given score/loss**

Focused Bayesian Prediction

- Five loss functions considered:
 - Three scores:
 - Log score
 - 2 Continuous rank probability score (CRPS)
 - ORPS for lower tail (appropriate for a financial return)
 - Two 'auxiliary predictive'-based losses
 - Adopting the flavour of auxiliary model-based ABC
 - Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin, McCabe, Frazier, Maneesoonthorn and Robert (2018)

Auxiliary predictive-based loss function

- What do we know about **prediction**?
- Simple parsimoneous models often forecast better than complex, highly parameterized (but incorrect) models....
- \Rightarrow Pick a simple parsimoneous 'auxiliary predictive': $q(y_{T+1}|y_{1:T}, \beta)$
- And select $p(y_{T+1}|y_{1:T}, \theta^i)$ (from \mathcal{P}) such that their predictive performance closely matches that of $q(y_{T+1}|y_{1:T}, \beta)$ over the test period

Auxiliary predictive-based loss function

• i.e. select $p(y_{T+1}|y_{1:T}, \theta^i)$ such that:

$$\frac{1}{n}\sum_{i=0}^{n-1} \left| p(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \theta^i) - q(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \widehat{\beta}) \right|$$

- < the **lowest** (α %, say) quantile
- i.e. such that loss (defined by this predictive difference) is small
- Choose q(y_{T+1}|y_{1:T}, β) to be a generalized autoregressive conditionally heteroscedastic (GARCH) model
 - with Student *t* errors (work-horse of empirical finance)
 - with normal errors (expected to be a poorer 'benchmark')

Numerical results

- For each of the 5 posteriors:
- Estimate: $E_{\varepsilon_n}[P|y_{1:T}] = \int_{\mathcal{P}} P d\Pi_{\varepsilon_n}[P|y_{1:T}]$
- by taking the sample average of the selected P
- Roll the whole process forward (with expanding T)
- Compute, over 200 (truely) out-of-sample periods:
- Median:
 - log scores; CRPS scores; tail-weighted CRPS scores
- Compare with results for exact (MCMC) mis-specified: $p(y_{T+1}|y_{1:T})$

Numerical results

- The loss function based on matching the Student t GARCH (auxiliary) predictive **yields the most accurate predictive** according to all measures of predictive accuracy
- The loss function based on the (raw) CRPS score is **second best** - according to all measures of predictive accuracy
- The loss function based on matching the normal GARCH (auxiliary) predictive does not as anticipated perform well
- The exact but mis-specified predictive is beaten by FBP in all cases.....
- So we are gaining in terms of predictive accuracy via FBP

Illustrative Example 2: No Simulation Error

- True model (F): Gaussian AR(4) with stochastic volatility
- Predictive class $(P_{\theta} \in \mathcal{P})$: Gaussian AR(1) with constant volatility
- Exact (misspecified) $p(y_{T+1}|y_{1:T})$ has closed-form
- As does P_{θ}
- \Rightarrow has enabled large values for:
 - Draws from $\Pi[P]$ (50,000)
 - Test period, *n* (5000 +)
 - Out-of-sample evaluations (5000)
- Very clear (and significant) ranking of CRPS-based FBP over exact (mis-specified) Bayes
- According to (the mean of) all three out-of-sample scores

Probability Integral Transform (PIT)

 Defining the cumulative predictive distribution evaluated at (observed) y^o_{T+1} as:

$$u_{T+1} = \int_{-\infty}^{y_{T+1}^o} p\left(y_{T+1}|y_{1:T}\right) dy_{T+1}$$

- for exact (mis-specified) $p(y_{T+1}|y_{1:T})$
- Under H_0 : " $p(y_{T+1}|y_{1:T})$ matches the true F":

$$u_{T+1}^{i},\;i=1,2,...,5000,\;$$
are $i.i.d.U\left(0,1
ight)$

• *H*⁰ rejected for exact Bayes

۲

- H₀ rejected for LS-based FBP
- H₀ not rejected for CRPS-based FBP
- Early days....more theoretical and numerical results to come.....