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Bayesian Prediction

Distribution of interest is:

p(yT+1|y1:T ) =
∫

θ
p(yT+1, θ|y1:T )dθ

=
∫

θ
p(yT+1|y1:T , θ)p(θ|y1:T )dθ

= Eθ|y [p(yT+1|y1:T , θ)]

(Marginal) predictive = expect. of conditional predictive

Conditional predictive reflects the assumed DGP

As does p(θ|y1:T )
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Implementing Bayesian Prediction

In the usual case where Eθ|y [p(yT+1|y1:T , θ)] cannot be
evaluated analytically

Take M draws from p(θ|y1:T ) (via a Markov chain Monte Carlo
algorithm, say)

And estimate p(yT+1|y1:T ) as

1 either:

p̂(yT+1|y1:T ) =
1
M

M

∑
i−1
p(yT+1|y1:T , θ

(i ))

2 or: p̂(yT+1|y1:T ) constructed from draws of y (i )T+1 simulated

from p(yT+1|y1:T , θ
(i ))

i.e. MCMC ⇒ exact Bayesian prediction

(up to simulation error)
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Achilles Heels!

1 What happens when we can’t generate an MCMC chain because
p(θ|y1:T ) is inaccessible?

⇒ exact Bayesian prediction not feasible

⇒ Frazier et al. (2018): “Approximate Bayesian Forecasting”

2 What happens when we acknowledge that the DGP used to
construct p(yT+1|y1:T ) misspecified?

This impinges on p(yT+1|y1:T ) via its two components:

p(yT+1|y1:T ) =
∫

θ
p(yT+1|θ, y1:T )p(θ|y1:T )dθ and

The conditional predictive: p(yT+1|θ, y1:T )

and p(θ|y1:T ) ∝ p(y1:T |θ)× p(θ)
In what sense does p(yT+1|y1:T ) remain the gold standard?
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A New Paradigm for Bayesian Prediction

Appropriate for the realistic setting in which the true DGP is
unknown

Define P as the class of conditional predictives that we
believe could have generated the data

With elements:
P ∈ P

where P denotes some conditional distribution

In principle, P may be a class of:

distributions, Pθ say, associated with a given parametric model

weighted combinations of predictives associated with different
parametric models

non-parametric conditional distributions
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Model-Acentric, Focused Bayesian Prediction

⇒ puts focus on (user-defined) minimizing out-of-sample loss

⇒ takes focus away from a particular (wrong!) model

Partition the sample: y1, y2, ...., yT into:

A training set: D = {yt ; 1 ≤ t ≤ τ}
A test set: T = {yt ; τ + 1 ≤ t ≤ τ + n = T}

Fit P on D ⇒ P̂1:t = P̂[.|y1:t ]

Use T (and expanding D) to compute:

Sn(P,F ) =
1
n

n−1
∑
i=0

S(P̂1:(τ+i), y(τ+i)+1)

as an estimate of S(P,F ) = EF [S(P,Yt+1)]
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Focused Bayesian Prediction (FBP)

Now define a prior over the elements of P : Π(P)

Update prior Π(P) to posterior Π(P|.) according to
predictive performance over the test set, T

i.e. Π(P|.) is tuned, or calibrated, to assign high posterior
mass to elements of P with high predictive accuracy

⇔ small loss

⇒ Π(P|.) is ‘focused’on elements of P that minimize this
particular loss

David Frazier, Ruben Loaiza Maya and Gael Martin, Monash University, Melbourne, BIRS Workshop, Mexico, November, 2018 ()Model-Acentric, Focused Bayesian Prediction 8 / 29



Focused Bayesian Prediction (FBP)

Now define a prior over the elements of P : Π(P)

Update prior Π(P) to posterior Π(P|.) according to
predictive performance over the test set, T

i.e. Π(P|.) is tuned, or calibrated, to assign high posterior
mass to elements of P with high predictive accuracy

⇔ small loss

⇒ Π(P|.) is ‘focused’on elements of P that minimize this
particular loss

David Frazier, Ruben Loaiza Maya and Gael Martin, Monash University, Melbourne, BIRS Workshop, Mexico, November, 2018 ()Model-Acentric, Focused Bayesian Prediction 8 / 29



Focused Bayesian Prediction (FBP)

Now define a prior over the elements of P : Π(P)

Update prior Π(P) to posterior Π(P|.) according to
predictive performance over the test set, T

i.e. Π(P|.) is tuned, or calibrated, to assign high posterior
mass to elements of P with high predictive accuracy

⇔ small loss

⇒ Π(P|.) is ‘focused’on elements of P that minimize this
particular loss

David Frazier, Ruben Loaiza Maya and Gael Martin, Monash University, Melbourne, BIRS Workshop, Mexico, November, 2018 ()Model-Acentric, Focused Bayesian Prediction 8 / 29



Focused Bayesian Prediction (FBP)

Now define a prior over the elements of P : Π(P)

Update prior Π(P) to posterior Π(P|.) according to
predictive performance over the test set, T

i.e. Π(P|.) is tuned, or calibrated, to assign high posterior
mass to elements of P with high predictive accuracy

⇔ small loss

⇒ Π(P|.) is ‘focused’on elements of P that minimize this
particular loss

David Frazier, Ruben Loaiza Maya and Gael Martin, Monash University, Melbourne, BIRS Workshop, Mexico, November, 2018 ()Model-Acentric, Focused Bayesian Prediction 8 / 29



Focused Bayesian Prediction (FBP)

Now define a prior over the elements of P : Π(P)

Update prior Π(P) to posterior Π(P|.) according to
predictive performance over the test set, T

i.e. Π(P|.) is tuned, or calibrated, to assign high posterior
mass to elements of P with high predictive accuracy

⇔ small loss

⇒ Π(P|.) is ‘focused’on elements of P that minimize this
particular loss

David Frazier, Ruben Loaiza Maya and Gael Martin, Monash University, Melbourne, BIRS Workshop, Mexico, November, 2018 ()Model-Acentric, Focused Bayesian Prediction 8 / 29



Focused Bayesian Prediction (FBP)

FBP Algorithm:

1. Draw P i from Π(P), i = 1, 2, ...,N

2. Compute P̂ i1:t using D and P i

3. Generate s = Sn(P̂ i1:t ,F ) over test set T

3. For each i = 1, 2, ...,N accept P̂ i1:t if s ≥ εn

Conditional on y1:t , and the observed s = Sn(P̂ i1:t ,F )
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Focused Bayesian Prediction

This likelihood-free algorithm produces i .i .ḋ . draws from the
posterior distribution with pdf:

πεn [P|s] =
π(P)gn[s|P]I{s ∈ Aεn}∫

P
π(P)gn[s|P]I{s ∈ Aεn}dP

Aεn = {P ∈ P , s ∈ B : s ∼ Gn(.|P), and s ≥ εn}

where Gn(.|P) is the distribution of Sn(P,F ), under F , with
pdf gn[s|P]
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Focused Bayesian Prediction

Draws produce a nonparametric estimate of πεn [P|s] that:

Does not require a closed-form for gn [s |P ] (for F ∈ P)
Does not require assumption that F ∈ P
i.e. explicitly accommodates model mis-specification

Different (problem-specific) measures of loss ⇒ different
πεn [P|s]

Different choices for εn

⇒ different aversion to (or tolerance of) loss
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Preliminary Theoretical Results

Theorem 1: Posterior Concentration (of Πεn [P|s]) :

Define:

P∗ = argmax
P∈P
S(P,F ) with ε∗ = S(P∗,F )

As εn → ε∗ (and under other mild conditions.....):

Πεn [|S(P,F )− S(P∗,F )| > δn|s] →
n→∞

0

⇒ posterior distribution of the expected score of P ∈ P
concentrates onto the maximum expected score possible
under F
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Preliminary Theoretical Results

In the case where P defines a class of parametric predictives
(and under added assumptions more generally)

⇒

Πεn [|P−P∗| > δn|s] →
n→∞

0

⇒ posterior distribution of P ∈ P concentrates onto the
predictive distribution that:

maximizes the expected score ⇔ minimizes loss
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Preliminary Theoretical Results

So Πεn [P|s] concentrates onto P∗,

with P∗ determined by the
choice of loss function, the choice of P , and by the true F [.|y1:t ]

How does Πεn [P|s] relate to the true F [.|y1:t ]?

Define:

Pεn [.|y1:t ] =
∫
PP[.|y1:t ]dΠεn [P|s]

= the posterior mean of P
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Preliminary Theoretical Results

Theorem 2: Predictive Merging. As n→ ∞ and εn → ε∗

(a) If F ∈ P (i.e. when the true predictive is in the class) we do
recover it:

ρ2TV
(
Pεn [.|y1:t ],F [.|y1:t ]

)
→ 0

i.e. (squared) total variation distance of Pεn [.|y1:t ] from the true
predictive → 0
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Preliminary Theoretical Results

Theorem 2: Predictive Merging. As n→ ∞ and εn → ε∗

(b) If F /∈ P (so under mis-specification):

lim
n→∞

ρ2TV
(
Pεn [.|y1:t ],F [.|y1:t ]

)
≤ 4ρ2Hellinger (P

∗,F )

P∗ = predictive distribution that maximizes the expected
score ⇔ is closest to F in this sense

⇒ for a given class P ∈ P , and given score (or loss) the
bound is the tightest possible

Actual magnitude of the bound is (of course) affected by P
and the chosen loss function
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Illustrative Example: Financial Asset Return

Let lnSt = log of an asset price

Let P define a class of predictives, Pθ, associated with a
stochastic volatility model

d lnSt =
√
VtdBSt

dVt = (θ1 − θ2Vt) dt + θ3
√
VtdBvt

with θ = (θ1, θ2, θ3)′

The true DGP, F , is a stochastic volatility model with random
jumps:

d lnSt =
√
VtdBSt + ZtdNt︸ ︷︷ ︸

= g (θ0,4,θ0,5....)

dVt = (θ0,1 − θ0,2Vt) dt + θ0,3
√
VtdBvt

θ0 = (θ0,1, θ0,2, θ0,3, ...)′ = true parameter (vector)
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Illustrative Example

If we were to simply adopt the (implied) mis-specified SV
model for

yt = lnSt − lnSt−1 = return at time t

and produce the conventional predictive: p(yT+1|y1:T )

What would we find?

p(θ|y1:T ) (under regul.) concentrates onto pseudo-true θ, θ∗

where θ∗ is close to θ0 (in KL-based sense)

⇒

lim
T→∞

p(yT+1|y1:T ) = p(yT+1|y1:T , θ
∗)

= what??
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Illustrative Example

P is misspecified

θ∗ 6= θ0

Minimizing KL divergence ≡ maximizing log score in sample

No guarantee of out-of-sample performance

FBF ensures accurate out-of-sample performance according to
any given score/loss
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Focused Bayesian Prediction

Five loss functions considered:

Three scores:

1 Log score
2 Continuous rank probability score (CRPS)
3 CRPS for lower tail (appropriate for a financial return)

Two auxiliary predictive-based losses

Adopting the flavour of auxiliary model-based ABC
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Auxiliary model-based ABC

Drovandi et al. (2011, 2015, 2018); Creel and Kristensen
(2015); Drovandi (2018); Martin et al. (2018)

Specify a tractable q(y1:T |β) that approximates p(y1:T |θ)

β̂MLE ⇒ ‘summary statistic’η(y1:T )

Produce approximate posterior, p(θ|η(y1:T ))

Aim in auxiliary model-based ABC?

Choose q(y1:T |β) to capture features of p(y1:T |θ)

If q(y1:T |β) ‘nests’(a correctly specified) p(y1:T |θ)

⇒ η(y1:T ) = β̂MLE is asymptotically suffi cient for θ
⇒ p(θ|η(y1:T )) = p(θ|y1:T ) (for large T )
⇒ ‘ideal’q(y1:T |β) is highly parameterized
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Auxiliary predictive-based loss function

But that do we know about prediction??

Simple parsimoneous models often forecast better than
complex, highly parameterized (but incorrect) models....

⇒ Approach in auxiliary-model based focused Bayesian
prediction?

Pick a simple parsimoneous ‘auxiliary predictive’:
q(yt+1|y1:t , β)

And select p(yt+1|y1:t , θ
i ) such that its predictive performance

closely matches that of q(yt+1|y1:t , β) over the test period
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Auxiliary predictive-based loss function

i.e. select p(yt+1|y1:t , θ
i ) such that:

1
n

n−1
∑
i=0

∣∣∣p(y(τ+i)+1|y1:(τ+i), θ
i )− q(y(τ+i)+1|y1:(τ+i), β̂)

∣∣∣
< the lowest (α%, say) quantile

i.e. such that loss (defined by this predictive difference) is small

Choose q(yt+1|y1:t , β) to be a generalized autoregressive
conditionally heteroscedastic (GARCH) model

with Student t errors (work-horse of empirical finance)

with normal errors (expected to be a poorer ‘benchmark’)
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Numerical results

Display draws from each Πεn [P|s]

(associated with one particular out-of-sample time period)

(Using the notation s for all five posteriors)

Estimate: Pεn [.|y1:t ] =
∫
PP[.|y1:t ]dΠεn [P|s]

Roll the whole process forward:

Compute (over 100 (truely) out-of-sample periods):

Median:

log scores; CRPS scores; tail-weighted CRPS scores

Compare with results for exact (MCMC) mis-specified:
p(yt+1|y1:t)
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(associated with one particular out-of-sample time period)
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Posterior distributions
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Median Scores (100 out-of-sample predictions)

The loss function based on matching the Student t GARCH
(auxiliary) predictive yields the most accurate predictive -
according to all measures of predictive accuracy

The loss function based on the (raw) CRPS score is second
best - according to all measures of predictive accuracy

The loss function based on matching the normal GARCH
(auxiliary) predictive does not - as anticipated - perform well

The exact but mis-specified predictive is in the lower half of
the ranking in all cases.....

So we are gaining in terms of predictive accuracy via FBP

A larger number of out-of-sample evaluations is needed for
precise conclusions.....(the particle filtering takes time.....)
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In Conclusion

New loss-based approach to Bayesian forecasting

Appropriate for anM-open world

(in which model-mis-specification is explicitly acknowledged)

Focused Bayesian prediction does improve predictive
performance under model mis-specification

Relative to an exact (but mis-specified) predictive

(At least based on this small numerical exercise....)

Important shift away from Bissiri, Holmes and Walker
(2016):

"A general framework for updating belief distributions"
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In Conclusion

Via BHW: could specify loss via a particular Sn(P,F )

And update prior beliefs π(P) as:

π[P|s] ∝ exp [−nSn(P,F )]π[P]

⇒ effectively assumes a particular model for Sn(P,F ):

gn(s|P) ∝ exp[−nSn(P,F )]

We make no such assumption ⇒ allow the data to detemine
gn(s|P)

With predictive accuracy guaranteed asymptotically

More to come.....
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