Model-Acentric, Focused Bayesian Prediction

David Frazier, Ruben Loaiza Maya and Gael Martin

Monash University, Melbourne

BIRS Workshop, Mexico

November, 2018

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

æ

イロト イヨト イヨト イヨト

• Distribution of interest is:

 $p(y_{T+1}|\mathbf{y}_{1:T})$

∃ ► < ∃ ►</p>

• Distribution of interest is:

 $p(y_{T+1}|\mathbf{y}_{1:T})$

∃ ► < ∃ ►</p>

• Distribution of interest is:

$$p(y_{T+1}|\mathbf{y}_{1:T}) = \int_{\boldsymbol{\theta}} p(y_{T+1}, \boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$

æ

< 67 ▶

• Distribution of interest is:

$$p(y_{T+1}|\mathbf{y}_{1:T}) = \int_{\boldsymbol{\theta}} p(y_{T+1}, \boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= \int_{\boldsymbol{\theta}} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$

æ

< 67 ▶

• Distribution of interest is:

$$p(y_{T+1}|\mathbf{y}_{1:T}) = \int_{\boldsymbol{\theta}} p(y_{T+1}, \boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= \int_{\boldsymbol{\theta}} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= E_{\boldsymbol{\theta}|\mathbf{y}} \left[p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}) \right]$$

æ

イロト イポト イヨト イヨト

• Distribution of interest is:

$$p(y_{T+1}|\mathbf{y}_{1:T}) = \int_{\boldsymbol{\theta}} p(y_{T+1}, \boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= \int_{\boldsymbol{\theta}} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= E_{\boldsymbol{\theta}|\mathbf{y}} [p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta})]$$

• (Marginal) predictive = expect. of conditional predictive

くぼう くほう くほう

• Distribution of interest is:

$$p(y_{T+1}|\mathbf{y}_{1:T}) = \int_{\boldsymbol{\theta}} p(y_{T+1}, \boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= \int_{\boldsymbol{\theta}} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= E_{\boldsymbol{\theta}|\mathbf{y}} [p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta})]$$

- (Marginal) predictive = expect. of conditional predictive
- Conditional predictive reflects the assumed DGP

• Distribution of interest is:

$$p(y_{T+1}|\mathbf{y}_{1:T}) = \int_{\boldsymbol{\theta}} p(y_{T+1}, \boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= \int_{\boldsymbol{\theta}} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}_{1:T}) d\boldsymbol{\theta}$$
$$= E_{\boldsymbol{\theta}|\mathbf{y}} [p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta})]$$

- (Marginal) predictive = expect. of conditional predictive
- Conditional predictive reflects the assumed DGP
- As does $p(\boldsymbol{\theta}|\mathbf{y}_{1:T})$

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

< 67 ▶

.

• In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**

- In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|\mathbf{y}_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)

- In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|\mathbf{y}_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)

- In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|\mathbf{y}_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)
- And estimate $p(y_{T+1}|\mathbf{y}_{1:T})$ as

- In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|\mathbf{y}_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)
- And estimate $p(y_{T+1}|\mathbf{y}_{1:T})$ as

either:

$$\widehat{p}(y_{T+1}|\mathbf{y}_{1:T}) = \frac{1}{M} \sum_{i=1}^{M} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}^{(i)})$$

- In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|\mathbf{y}_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)
- And estimate $p(y_{T+1}|\mathbf{y}_{1:T})$ as

either:

$$\widehat{p}(y_{T+1}|\mathbf{y}_{1:T}) = rac{1}{M} \sum_{i=1}^{M} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}^{(i)})$$

2 or: $\hat{p}(y_{T+1}|\mathbf{y}_{1:T})$ constructed from draws of $y_{T+1}^{(i)}$ simulated from $p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}^{(i)})$

- In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|\mathbf{y}_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)
- And estimate $p(y_{T+1}|\mathbf{y}_{1:T})$ as

either:

$$\widehat{p}(y_{T+1}|\mathbf{y}_{1:T}) = \frac{1}{M} \sum_{i=1}^{M} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}^{(i)})$$

- or: $\hat{p}(y_{T+1}|\mathbf{y}_{1:T})$ constructed from draws of $y_{T+1}^{(i)}$ simulated from $p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}^{(i)})$
- i.e. MCMC \Rightarrow exact Bayesian prediction

- In the usual case where $E_{\theta|\mathbf{y}}\left[p(y_{T+1}|\mathbf{y}_{1:T}, \theta)\right]$ cannot be evaluated **analytically**
- Take *M* draws from $p(\theta|\mathbf{y}_{1:T})$ (via a Markov chain Monte Carlo algorithm, say)
- And estimate $p(y_{T+1}|\mathbf{y}_{1:T})$ as

either:

$$\widehat{p}(y_{T+1}|\mathbf{y}_{1:T}) = \frac{1}{M} \sum_{i=1}^{M} p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}^{(i)})$$

2 or: $\hat{p}(y_{T+1}|\mathbf{y}_{1:T})$ constructed from draws of $y_{T+1}^{(i)}$ simulated from $p(y_{T+1}|\mathbf{y}_{1:T}, \boldsymbol{\theta}^{(i)})$

- i.e. MCMC \Rightarrow exact Bayesian prediction
 - (up to simulation error)

æ

イロト イヨト イヨト イヨト

What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - \Rightarrow exact Bayesian prediction not feasible

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - \Rightarrow **exact** Bayesian prediction not feasible
 - \Rightarrow Frazier et al. (2018): "Approximate Bayesian Forecasting"

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - ullet \Rightarrow **exact** Bayesian prediction not feasible
 - \Rightarrow Frazier et al. (2018): "Approximate Bayesian Forecasting"
- What happens when we acknowledge that the DGP used to construct p(y_{T+1}|y_{1:T}) misspecified?

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - ullet \Rightarrow **exact** Bayesian prediction not feasible
 - \Rightarrow Frazier et al. (2018): "Approximate Bayesian Forecasting"
- What happens when we acknowledge that the DGP used to construct p(y_{T+1}|y_{1:T}) misspecified?
 - This impinges on $p(y_{T+1}|\mathbf{y}_{1:T})$ via its two components:

$$p(y_{\mathcal{T}+1}|\mathbf{y}_{1:\mathcal{T}}) = \int_{ heta} p(y_{\mathcal{T}+1}|m{ heta},\mathbf{y}_{1:\mathcal{T}}) p(m{ heta}|\mathbf{y}_{1:\mathcal{T}}) dm{ heta}$$
 and

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - ullet \Rightarrow **exact** Bayesian prediction not feasible
 - \Rightarrow Frazier et al. (2018): "Approximate Bayesian Forecasting"
- What happens when we acknowledge that the DGP used to construct p(y_{T+1}|y_{1:T}) misspecified?
 - This impinges on $p(y_{T+1}|\mathbf{y}_{1:T})$ via its two components:

$$p(y_{\mathcal{T}+1}|\mathbf{y}_{1:\mathcal{T}}) = \int_{ heta} p(y_{\mathcal{T}+1}|m{ heta},\mathbf{y}_{1:\mathcal{T}}) p(m{ heta}|\mathbf{y}_{1:\mathcal{T}}) dm{ heta}$$
 and

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - ullet \Rightarrow **exact** Bayesian prediction not feasible
 - \Rightarrow Frazier et al. (2018): "Approximate Bayesian Forecasting"
- What happens when we acknowledge that the DGP used to construct p(y_{T+1}|y_{1:T}) misspecified?
 - This impinges on $p(y_{T+1}|\mathbf{y}_{1:T})$ via its two components:

$$p(y_{\mathcal{T}+1}|\mathbf{y}_{1:\mathcal{T}}) = \int_{ heta} p(y_{\mathcal{T}+1}|m{ heta},\mathbf{y}_{1:\mathcal{T}}) p(m{ heta}|\mathbf{y}_{1:\mathcal{T}}) dm{ heta}$$
 and

• The conditional predictive: $p(y_{T+1}|\boldsymbol{\theta}, \mathbf{y}_{1:T})$

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - ullet \Rightarrow **exact** Bayesian prediction not feasible
 - \Rightarrow Frazier et al. (2018): "Approximate Bayesian Forecasting"
- What happens when we acknowledge that the DGP used to construct p(y_{T+1}|y_{1:T}) misspecified?
 - This impinges on $p(y_{T+1}|\mathbf{y}_{1:T})$ via its two components:

$$p(y_{\mathcal{T}+1}|\mathbf{y}_{1:\mathcal{T}}) = \int_{ heta} p(y_{\mathcal{T}+1}|m{ heta},\mathbf{y}_{1:\mathcal{T}}) p(m{ heta}|\mathbf{y}_{1:\mathcal{T}}) dm{ heta}$$
 and

- The conditional predictive: $p(y_{T+1}|\boldsymbol{\theta}, \mathbf{y}_{1:T})$
- and $p(\theta|\mathbf{y}_{1:T}) \propto p(\mathbf{y}_{1:T}|\theta) \times p(\theta)$

- What happens when we can't generate an MCMC chain because p(θ|y_{1:T}) is inaccessible?
 - ullet \Rightarrow **exact** Bayesian prediction not feasible
 - \Rightarrow Frazier et al. (2018): "Approximate Bayesian Forecasting"
- What happens when we acknowledge that the DGP used to construct p(y_{T+1}|y_{1:T}) misspecified?
 - This impinges on $p(y_{T+1}|\mathbf{y}_{1:T})$ via its two components:

$$p(y_{\mathcal{T}+1}|\mathbf{y}_{1:\mathcal{T}}) = \int_{ heta} p(y_{\mathcal{T}+1}|m{ heta},\mathbf{y}_{1:\mathcal{T}}) p(m{ heta}|\mathbf{y}_{1:\mathcal{T}}) dm{ heta}$$
 and

- The conditional predictive: $p(y_{T+1}|\theta, \mathbf{y}_{1:T})$
- and $p(\theta|\mathbf{y}_{1:T}) \propto p(\mathbf{y}_{1:T}|\theta) \times p(\theta)$
- In what sense does $p(y_{T+1}|\mathbf{y}_{1:T})$ remain the gold standard?

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

→ ∃ →

• Appropriate for the realistic setting in which the **true DGP is unknown**

- Appropriate for the realistic setting in which the **true DGP is unknown**
- Define ${\cal P}$ as the class of $conditional \ predictives$ that we believe could have generated the data

- Appropriate for the realistic setting in which the **true DGP is unknown**
- Define ${\cal P}$ as the class of $conditional \ predictives$ that we believe could have generated the data
- With elements:

 $P \in \mathcal{P}$

- Appropriate for the realistic setting in which the **true DGP is unknown**
- Define \mathcal{P} as the class of **conditional predictives** that we believe **could** have generated the data
- With elements:

 $P \in \mathcal{P}$

• where P denotes some conditional distribution

- Appropriate for the realistic setting in which the **true DGP is unknown**
- Define \mathcal{P} as the class of **conditional predictives** that we believe **could** have generated the data
- With elements:

$$P \in \mathcal{P}$$

- where P denotes some conditional distribution
- In principle, ${\cal P}$ may be a class of:

- Appropriate for the realistic setting in which the **true DGP is unknown**
- Define ${\cal P}$ as the class of $conditional \ predictives$ that we believe could have generated the data
- With elements:

$$P \in \mathcal{P}$$

- where P denotes some conditional distribution
- In principle, ${\cal P}$ may be a class of:
 - distributions, P_{θ} say, associated with a **given parametric** model
- Appropriate for the realistic setting in which the **true DGP is unknown**
- Define ${\cal P}$ as the class of $conditional \ predictives$ that we believe could have generated the data
- With elements:

$$P \in \mathcal{P}$$

- where P denotes some conditional distribution
- In principle, ${\cal P}$ may be a class of:
 - distributions, P_{θ} say, associated with a **given parametric** model
 - weighted combinations of predictives associated with **different parametric** models

- Appropriate for the realistic setting in which the **true DGP is unknown**
- Define ${\cal P}$ as the class of $conditional \ predictives$ that we believe could have generated the data
- With elements:

$$P \in \mathcal{P}$$

- where P denotes some conditional distribution
- In principle, ${\cal P}$ may be a class of:
 - $\bullet\,$ distributions, ${\it P}_{\theta}$ say, associated with a given parametric model
 - weighted combinations of predictives associated with **different parametric** models
 - non-parametric conditional distributions

• Define predictive a proper scoring rule: $S(P, y_{t+1})$

- Define predictive a proper scoring rule: $S(P, y_{t+1})$
- with expectation, under the **truth**, *F*, as:

$$\mathcal{S}(\mathsf{P},\mathsf{F}) = \mathbb{E}_{\mathsf{F}}\left[S(\mathsf{P},\mathsf{Y}_{t+1})
ight]$$

- Define predictive a proper scoring rule: $S(P, y_{t+1})$
- with expectation, under the **truth**, *F*, as:

$$\mathcal{S}(\mathsf{P},\mathsf{F}) = \mathbb{E}_{\mathsf{F}}\left[\mathcal{S}(\mathsf{P},\mathsf{Y}_{t+1})\right]$$

• The map $P \mapsto -\mathcal{S}(P,F)$ defines a loss function over the models in \mathcal{P}

- Define predictive a proper scoring rule: $S(P, y_{t+1})$
- with expectation, under the **truth**, *F*, as:

$$\mathcal{S}(\mathsf{P},\mathsf{F}) = \mathbb{E}_{\mathsf{F}}\left[\mathcal{S}(\mathsf{P},\mathsf{Y}_{t+1})\right]$$

- The map $P \mapsto -\mathcal{S}(P, F)$ defines a loss function over the models in \mathcal{P}
- \bullet Aim is to focus on the elements of ${\cal P}$ that minimize this loss

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

• \Rightarrow puts **focus on** (user-defined) minimizing out-of-sample loss

- \Rightarrow puts focus on (user-defined) minimizing out-of-sample loss
- \Rightarrow takes **focus away** from a particular (wrong!) **model**

- \Rightarrow puts focus on (user-defined) minimizing out-of-sample loss
- \Rightarrow takes **focus away** from a particular (wrong!) **model**
- Partition the sample: y_1, y_2, \dots, y_T into:

- \Rightarrow puts focus on (user-defined) minimizing out-of-sample loss
- \Rightarrow takes **focus away** from a particular (wrong!) **model**
- Partition the sample: y_1, y_2, \dots, y_T into:
 - A training set: $\mathcal{D} = \{y_t; 1 \le t \le \tau\}$

- \Rightarrow puts **focus on** (user-defined) minimizing out-of-sample loss
- \Rightarrow takes **focus away** from a particular (wrong!) **model**
- Partition the sample: y_1, y_2, \dots, y_T into:
 - A training set: $\mathcal{D} = \{y_t; 1 \le t \le \tau\}$
 - A test set: $\mathcal{T} = \{y_t; \tau + 1 \le t \le \tau + n = T\}$

- ullet \Rightarrow puts focus on (user-defined) minimizing out-of-sample loss
- \Rightarrow takes **focus away** from a particular (wrong!) **model**
- Partition the sample: y_1, y_2, \dots, y_T into:
 - A training set: $\mathcal{D} = \{y_t; 1 \le t \le \tau\}$
 - A test set: $T = \{y_t; \tau + 1 \le t \le \tau + n = T\}$
- Fit P on $\mathcal{D} \Rightarrow \widehat{P}_{1:t} = \widehat{P}[.|y_{1:t}]$

- \Rightarrow puts focus on (user-defined) minimizing out-of-sample loss
- \Rightarrow takes **focus away** from a particular (wrong!) **model**
- Partition the sample: $y_1, y_2, ..., y_T$ into:
 - A training set: $\mathcal{D} = \{y_t; 1 \le t \le \tau\}$
 - A test set: $T = \{y_t; \tau + 1 \le t \le \tau + n = T\}$
- Fit P on $\mathcal{D} \Rightarrow \widehat{P}_{1:t} = \widehat{P}[.|y_{1:t}]$
- Use \mathcal{T} (and expanding \mathcal{D}) to compute:

$$S_n(P,F) = rac{1}{n} \sum_{i=0}^{n-1} S(\widehat{P}_{1:(\tau+i)}, y_{(\tau+i)+1})$$

- ullet \Rightarrow puts focus on (user-defined) minimizing out-of-sample loss
- \Rightarrow takes **focus away** from a particular (wrong!) **model**
- Partition the sample: $y_1, y_2, ..., y_T$ into:
 - A training set: $\mathcal{D} = \{y_t; 1 \le t \le \tau\}$
 - A test set: $T = \{y_t; \tau + 1 \le t \le \tau + n = T\}$
- Fit P on $\mathcal{D} \Rightarrow \widehat{P}_{1:t} = \widehat{P}[.|y_{1:t}]$
- Use \mathcal{T} (and expanding \mathcal{D}) to compute:

$$S_n(P, F) = \frac{1}{n} \sum_{i=0}^{n-1} S(\widehat{P}_{1:(\tau+i)}, y_{(\tau+i)+1})$$

• as an estimate of $\mathcal{S}(\mathsf{P},\mathsf{F}) = \mathbb{E}_{\mathsf{F}}\left[\mathsf{S}(\mathsf{P},\mathsf{Y}_{t+1})
ight]$

• Now define a prior over the elements of $\mathcal{P}: \Pi(\mathcal{P})$

- Now define a prior over the elements of $\mathcal{P}: \Pi(\mathcal{P})$
- Update prior Π(P) to posterior Π(P|.) according to predictive performance over the test set, T

- Now define a prior over the elements of $\mathcal{P}: \Pi(\mathcal{P})$
- Update prior Π(P) to posterior Π(P|.) according to predictive performance over the test set, T
- i.e. Π(P|.) is tuned, or calibrated, to assign high posterior mass to elements of *P* with high predictive accuracy

- Now define a prior over the elements of $\mathcal{P}: \Pi(\mathcal{P})$
- Update prior Π(P) to posterior Π(P|.) according to predictive performance over the test set, T
- i.e. Π(P|.) is tuned, or calibrated, to assign high posterior mass to elements of *P* with high predictive accuracy
- ⇔ small loss

- Now define a prior over the elements of $\mathcal{P}: \Pi(\mathcal{P})$
- Update prior Π(P) to posterior Π(P|.) according to predictive performance over the test set, T
- i.e. Π(P|.) is tuned, or calibrated, to assign high posterior mass to elements of P with high predictive accuracy
- ⇔ small loss
- $\Rightarrow \Pi({\it P}|.)$ is 'focused' on elements of ${\cal P}$ that minimize this particular loss

• FBP Algorithm:

< 67 ▶

• FBP Algorithm:

< 67 ▶

• FBP Algorithm:

1. Draw
$$P^i$$
 from $\Pi(P)$, $i = 1, 2, ..., N$

< 67 ▶

• FBP Algorithm:

1. Draw
$$P^i$$
 from $\Pi(P)$, $i = 1, 2, ..., N$

2. Compute
$$\widehat{P}_{1:t}^{i}$$
 using \mathcal{D} and P^{i}

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

< 67 ▶

• FBP Algorithm:

1. Draw
$$P^i$$
 from $\Pi(P)$, $i = 1, 2, ..., N$

2. Compute
$$\widehat{P}_{1:t}^{i}$$
 using \mathcal{D} and P^{i}

3. Generate
$$s=S_n(\widehat{P}_{1:t}^i,F)$$
 over test set ${\mathcal T}$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

• FBP Algorithm:

1. Draw
$$P^i$$
 from $\Pi(P)$, $i = 1, 2, ..., N$

2. Compute
$$\widehat{P}_{1:t}^{i}$$
 using \mathcal{D} and P^{i}

3. Generate
$$s = S_n(\widehat{P}_{1:t}^i, F)$$
 over test set \mathcal{T}

3. For each
$$i = 1, 2, ..., N$$
 accept $\widehat{P}_{1:t}^i$ if $s \ge \varepsilon_n$

æ

イロト イ理ト イヨト イヨト

• FBP Algorithm:

1. Draw
$$P^i$$
 from $\Pi(P)$, $i = 1, 2, ..., N$

2. Compute
$$\widehat{P}_{1:t}^{i}$$
 using \mathcal{D} and P^{i}

3. Generate
$$s = S_n(\widehat{P}_{1:t}^i, F)$$
 over test set \mathcal{T}

3. For each
$$i = 1, 2, ..., N$$
 accept $\widehat{P}_{1:t}^i$ if $s \ge \varepsilon_n$

• Conditional on $y_{1:t}$, and the observed $s = S_n(\widehat{P}_{1:t}^i, F)$

• This **likelihood-free algorithm** produces *i.i.d.* draws from the **posterior** distribution with pdf:

• This **likelihood-free algorithm** produces *i.i.d.* draws from the **posterior** distribution with pdf:

• This **likelihood-free algorithm** produces *i.i.d.* draws from the **posterior** distribution with pdf:

$$\pi_{\varepsilon_n}[P|s] = \frac{\pi(P)g_n[s|P]\mathbb{I}\{s \in A_{\varepsilon_n}\}}{\int\limits_{\mathcal{P}} \pi(P)g_n[s|P]\mathbb{I}\{s \in A_{\varepsilon_n}\}dP}$$
$$A_{\varepsilon_n} = \{P \in \mathcal{P}, \ s \in \mathcal{B}: s \sim G_n(.|P), \text{ and } s \ge \varepsilon_n\}$$

• This **likelihood-free algorithm** produces *i.i.d.* draws from the **posterior** distribution with pdf:

$$\begin{aligned} \pi_{\varepsilon_n}[P|s] &= \frac{\pi(P)g_n[s|P]\mathbb{I}\{s \in A_{\varepsilon_n}\}}{\int\limits_{\mathcal{P}} \pi(P)g_n[s|P]\mathbb{I}\{s \in A_{\varepsilon_n}\}dP} \\ A_{\varepsilon_n} &= \{P \in \mathcal{P}, \ s \in \mathcal{B} : s \sim G_n(.|P), \text{ and } s \ge \varepsilon_n\} \end{aligned}$$

• where $G_n(.|P)$ is the **distribution** of $S_n(P, F)$, under F, with **pdf** $g_n[s|P]$

• Draws produce a **nonparametric** estimate of $\pi_{\varepsilon_n}[P|s]$ that:

• Does **not** require a closed-form for $g_n[s|P]$ (for $F \in \mathcal{P}$)

- Does **not** require a closed-form for $g_n[s|P]$ (for $F \in \mathcal{P}$)
- Does **not** require assumption that $F \in \mathcal{P}$

- Does **not** require a closed-form for $g_n[s|P]$ (for $F \in \mathcal{P}$)
- Does **not** require assumption that $F \in \mathcal{P}$
- i.e. explicitly accommodates model mis-specification

- Does **not** require a closed-form for $g_n[s|P]$ (for $F \in \mathcal{P}$)
- Does **not** require assumption that $F \in \mathcal{P}$
- i.e. explicitly accommodates model mis-specification
- Different (problem-specific) measures of loss \Rightarrow different $\pi_{\varepsilon_n}[P|s]$
Focused Bayesian Prediction

• Draws produce a **nonparametric** estimate of $\pi_{\varepsilon_n}[P|s]$ that:

- Does **not** require a closed-form for $g_n[s|P]$ (for $F \in \mathcal{P}$)
- Does **not** require assumption that $F \in \mathcal{P}$
- i.e. explicitly accommodates model mis-specification
- Different (problem-specific) measures of $\mathbf{loss} \Rightarrow \mathrm{different}$ $\pi_{\varepsilon_n}[P|s]$
- Different choices for ε_n

Focused Bayesian Prediction

• Draws produce a **nonparametric** estimate of $\pi_{\varepsilon_n}[P|s]$ that:

- Does **not** require a closed-form for $g_n[s|P]$ (for $F \in \mathcal{P}$)
- Does **not** require assumption that $F \in \mathcal{P}$
- i.e. explicitly accommodates model mis-specification
- Different (problem-specific) measures of $\mathbf{loss} \Rightarrow \mathrm{different}$ $\pi_{\varepsilon_n}[P|s]$
- Different choices for ε_n
- \Rightarrow different aversion to (or tolerance of) loss

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

æ

・ 何 ト ・ ヨ ト ・ ヨ ト

• Theorem 1: Posterior Concentration (of $\prod_{\varepsilon_n} [P|s]$) :

- Theorem 1: Posterior Concentration (of $\prod_{\varepsilon_n} [P|s]$) :
- Define:

$$P^* = rg\max_{P \in \mathcal{P}} \mathcal{S}(P, F) ext{ with } \varepsilon^* = \mathcal{S}(P^*, F)$$

- Theorem 1: Posterior Concentration (of $\prod_{\varepsilon_n} [P|s]$) :
- Define:

$$\textit{P}^{*} = \arg \max_{\textit{P} \in \mathcal{P}} \mathcal{S}(\textit{P},\textit{F}) \text{ with } \varepsilon^{*} = \mathcal{S}(\textit{P}^{*},\textit{F})$$

• As $\varepsilon_n \to \varepsilon^*$ (and under other mild conditions.....):

- Theorem 1: Posterior Concentration (of $\prod_{\varepsilon_n} [P|s]$) :
- Define:

$$\textit{P}^{*} = \arg \max_{\textit{P} \in \mathcal{P}} \mathcal{S}(\textit{P},\textit{F}) \text{ with } \varepsilon^{*} = \mathcal{S}(\textit{P}^{*},\textit{F})$$

• As $\varepsilon_n \to \varepsilon^*$ (and under other mild conditions.....):

- Theorem 1: Posterior Concentration (of $\prod_{\varepsilon_n} [P|s]$) :
- Define:

$$\textit{P}^{*} = \arg \max_{\textit{P} \in \mathcal{P}} \mathcal{S}(\textit{P},\textit{F}) \text{ with } \varepsilon^{*} = \mathcal{S}(\textit{P}^{*},\textit{F})$$

• As $\varepsilon_n \to \varepsilon^*$ (and under other mild conditions.....):

$$\prod_{\varepsilon_n} [|\mathcal{S}(P, F) - \mathcal{S}(P^*, F)| > \delta_n |s] \underset{n \to \infty}{\to} 0$$

- Theorem 1: Posterior Concentration (of $\prod_{\varepsilon_n} [P|s]$) :
- Define:

$$\textit{P}^{*} = \arg \max_{\textit{P} \in \mathcal{P}} \mathcal{S}(\textit{P},\textit{F}) \text{ with } \epsilon^{*} = \mathcal{S}(\textit{P}^{*},\textit{F})$$

• As $\varepsilon_n \to \varepsilon^*$ (and under other mild conditions.....):

$$\prod_{\varepsilon_n} [|\mathcal{S}(\mathcal{P}, \mathcal{F}) - \mathcal{S}(\mathcal{P}^*, \mathcal{F})| > \delta_n |s] \underset{n \to \infty}{\to} 0$$

 ⇒ posterior distribution of the expected score of P ∈ P concentrates onto the maximum expected score possible under F

• In the case where \mathcal{P} defines a class of **parametric** predictives (and under added assumptions more generally)

• In the case where \mathcal{P} defines a class of **parametric** predictives (and under added assumptions more generally)

 $\bullet \Rightarrow$

$$\Pi_{\varepsilon_n}[|P-P^*| > \delta_n|s] \xrightarrow[n \to \infty]{} 0$$

• In the case where \mathcal{P} defines a class of **parametric** predictives (and under added assumptions more generally)

$$\bullet \Rightarrow$$

$$\Pi_{\varepsilon_n}[|P - P^*| > \delta_n|s] \xrightarrow[n \to \infty]{} 0$$

⇒ posterior distribution of P ∈ P concentrates onto the predictive distribution that:

• In the case where \mathcal{P} defines a class of **parametric** predictives (and under added assumptions more generally)

$$\bullet \Rightarrow$$

$$\Pi_{\varepsilon_n}[|P - P^*| > \delta_n|s] \xrightarrow[n \to \infty]{} 0$$

- ⇒ posterior distribution of P ∈ P concentrates onto the predictive distribution that:
- maximizes the expected score \Leftrightarrow minimizes loss

• So $\prod_{\mathcal{E}_n}[P|s]$ concentrates onto P^* ,

• So $\prod_{\mathcal{E}_n}[P|s]$ concentrates onto P^* ,

So Π_{ε_n}[P|s] concentrates onto P^{*}, with P^{*} determined by the choice of loss function,

So Π_{ε_n}[P|s] concentrates onto P^{*}, with P^{*} determined by the choice of loss function, the choice of P,

So Π_{ε_n}[P|s] concentrates onto P^{*}, with P^{*} determined by the choice of loss function, the choice of P, and by the true F[.|y_{1:t}]

- So Π_{ε_n}[P|s] concentrates onto P^{*}, with P^{*} determined by the choice of loss function, the choice of P, and by the true F[.|y_{1:t}]
- How does $\prod_{\varepsilon_n} [P|s]$ relate to the true $F[.|y_{1:t}]$?

- So Π_{εn}[P|s] concentrates onto P*, with P* determined by the choice of loss function, the choice of P, and by the true F[.|y_{1:t}]
- How does $\prod_{\varepsilon_n} [P|s]$ relate to the true $F[.|y_{1:t}]$?
- Define:

$$\overline{P}_{\varepsilon_n}[.|y_{1:t}] = \int_{\mathcal{P}} P[.|y_{1:t}] d\Pi_{\varepsilon_n}[P|s]$$

= the posterior mean of P

• Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$

• Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$

(a) If $F \in \mathcal{P}$ (i.e. when the **true predictive** is in the class) we **do** recover it:

$$\rho_{TV}^2 \left(\overline{P}_{\varepsilon_n}[.|y_{1:t}], F[.|y_{1:t}] \right) \rightarrow 0$$

• Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$

(a) If $F \in \mathcal{P}$ (i.e. when the **true predictive** is in the class) we **do** recover it:

$$\rho_{TV}^2 \left(\overline{P}_{\varepsilon_n}[.|y_{1:t}], F[.|y_{1:t}] \right) \rightarrow 0$$

i.e. (squared) total variation distance of P
_{ε_n}[.|y_{1:t}] from the true predictive → 0

• Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$

• Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$

(b) If $F \notin \mathcal{P}$ (so under **mis-specification**):

$$\lim_{n \to \infty} \rho_{TV}^2 \left(\overline{P}_{\varepsilon_n}[.|y_{1:t}], F[.|y_{1:t}] \right) \le 4\rho_{Hellinger}^2(P^*, F)$$

- Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$
- (b) If $F \notin \mathcal{P}$ (so under **mis-specification**):

$$\lim_{n \to \infty} \rho_{TV}^2 \left(\overline{P}_{\varepsilon_n}[.|y_{1:t}], F[.|y_{1:t}] \right) \le 4\rho_{Hellinger}^2(P^*, F)$$

P^{*} = predictive distribution that maximizes the expected score ⇔ is closest to *F* in this sense

- Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$
- (b) If $F \notin \mathcal{P}$ (so under **mis-specification**):

$$\lim_{n \to \infty} \rho_{TV}^2 \left(\overline{P}_{\varepsilon_n}[.|y_{1:t}], F[.|y_{1:t}] \right) \le 4\rho_{Hellinger}^2(P^*, F)$$

- *P*^{*} = predictive distribution that maximizes the expected score ⇔ is closest to *F* in this sense
- ⇒ for a given class P ∈ P, and given score (or loss) the bound is the tightest possible

- Theorem 2: Predictive Merging. As $n \to \infty$ and $\varepsilon_n \to \varepsilon^*$
- (b) If $F \notin \mathcal{P}$ (so under **mis-specification**):

$$\lim_{n \to \infty} \rho_{TV}^2 \left(\overline{P}_{\varepsilon_n}[.|y_{1:t}], F[.|y_{1:t}] \right) \le 4\rho_{Hellinger}^2(P^*, F)$$

- *P*^{*} = predictive distribution that maximizes the expected score ⇔ is closest to *F* in this sense
- ⇒ for a given class P ∈ P, and given score (or loss) the bound is the tightest possible
- Actual magnitude of the bound is (of course) affected by ${\cal P}$ and the chosen loss function

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

• Let $\ln S_t = \log$ of an asset price

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

• Let $\ln S_t = \log$ of an asset price

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

- Let $\ln S_t = \log$ of an asset price
- Let \mathcal{P} define a class of predictives, P_{θ} ,

- Let $\ln S_t = \log$ of an asset price
- Let \mathcal{P} define a class of predictives, P_{θ} ,

- Let $\ln S_t = \log$ of an asset price
- Let \mathcal{P} define a class of predictives, P_{θ} , associated with a **stochastic volatility** model

$$egin{aligned} d \ln S_t &= \sqrt{V_t} dB_t^S \ dV_t &= (heta_1 - heta_2 V_t) \, dt + heta_3 \sqrt{V_t} dB_t^
u \end{aligned}$$

- Let $\ln S_t = \log$ of an asset price
- Let \mathcal{P} define a class of predictives, P_{θ} , associated with a **stochastic volatility** model

$$d \ln S_t = \sqrt{V_t} dB_t^S$$

 $dV_t = (heta_1 - heta_2 V_t) dt + heta_3 \sqrt{V_t} dB_t^v$

• with $\boldsymbol{ heta}=(heta_1, heta_2, heta_3)'$

- Let $\ln S_t = \log \text{ of an asset price}$
- Let \mathcal{P} define a class of predictives, P_{θ} , associated with a **stochastic volatility** model

$$egin{aligned} &d \ln S_t = \sqrt{V_t} dB_t^S \ &d V_t = (heta_1 - heta_2 V_t) \, dt + heta_3 \sqrt{V_t} dB_t^
u \end{aligned}$$

- with $oldsymbol{ heta}=(heta_1, heta_2, heta_3)'$
- The **true DGP**, *F*, is a stochastic volatility model with random **jumps**:

$$d \ln S_t = \sqrt{V_t} dB_t^S + \underbrace{Z_t dN_t}_{=g(\theta_{0,4},\theta_{0,5}...)}$$
$$dV_t = (\theta_{0,1} - \theta_{0,2}V_t) dt + \theta_{0,3}\sqrt{V_t} dB_t^v$$
Illustrative Example: Financial Asset Return

- Let $\ln S_t = \log$ of an asset price
- Let \mathcal{P} define a class of predictives, P_{θ} , associated with a **stochastic volatility** model

$$egin{aligned} d \ln S_t &= \sqrt{V_t} dB_t^S \ dV_t &= (heta_1 - heta_2 V_t) \, dt + heta_3 \sqrt{V_t} dB_t^
u \end{aligned}$$

- with ${m heta}=(heta_1, heta_2, heta_3)'$
- The true DGP, *F*, is a stochastic volatility model with random jumps:

$$d \ln S_t = \sqrt{V_t} dB_t^S + \underbrace{Z_t dN_t}_{= g(\theta_{0,4}, \theta_{0,5}...)}$$
$$dV_t = (\theta_{0,1} - \theta_{0,2}V_t) dt + \theta_{0,3}\sqrt{V_t} dB_t^v$$
$$\bullet \ \theta_0 = (\theta_{0,1}, \theta_{0,2}, \theta_{0,3}, ...)' = \text{true parameter (vector)}$$

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

★聞▶ ★ 国▶ ★ 国▶

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

• and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?
- $p(\theta|y_{1:T})$ (under regul.) concentrates onto **pseudo-true** θ , θ^*

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?
- $p(\theta|y_{1:T})$ (under regul.) concentrates onto **pseudo-true** θ , θ^*
- where θ^* is close to θ_0 (in KL-based sense)

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?
- $p(\theta|y_{1:T})$ (under regul.) concentrates onto **pseudo-true** θ , θ^*
- where θ^* is close to θ_0 (in KL-based sense)

$$\lim_{T \to \infty} p(y_{T+1}|y_{1:T}) = p(y_{T+1}|y_{1:T}, \boldsymbol{\theta}^*)$$

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?
- $p(\theta|y_{1:T})$ (under regul.) concentrates onto **pseudo-true** θ , θ^*
- where θ^* is close to θ_0 (in KL-based sense)

$$\lim_{T \to \infty} p(y_{T+1}|y_{1:T}) = p(y_{T+1}|y_{1:T}, \boldsymbol{\theta}^*)$$

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?
- $p(\theta|y_{1:T})$ (under regul.) concentrates onto **pseudo-true** θ , θ^*
- where θ^* is close to θ_0 (in KL-based sense)

$$\lim_{T \to \infty} p(y_{T+1}|y_{1:T}) = p(y_{T+1}|y_{1:T}, \theta^*) = what??$$

 If we were to simply adopt the (implied) mis-specified SV model for

 $y_t = \ln S_t - \ln S_{t-1} =$ **return** at time t

- and produce the conventional predictive: $p(y_{T+1}|y_{1:T})$
- What would we find?
- $p(\theta|y_{1:T})$ (under regul.) concentrates onto **pseudo-true** θ , θ^*
- where θ^* is close to θ_0 (in KL-based sense)

$$\lim_{T \to \infty} p(y_{T+1}|y_{1:T}) = p(y_{T+1}|y_{1:T}, \theta^*) = what??$$

• P is misspecified

æ

< 🗗 🕨

.

- P is misspecified
- $\theta^* \neq \theta_0$

æ

イロト イヨト イヨト イヨト

- P is misspecified
- $\theta^* \neq \theta_0$
- Minimizing KL divergence \equiv maximizing log score in sample

∃ ► < ∃ ►</p>

- P is misspecified
- $\theta^* \neq \theta_0$
- Minimizing KL divergence \equiv maximizing log score in sample
- No guarantee of out-of-sample performance

- P is misspecified
- $\theta^* \neq \theta_0$
- Minimizing KL divergence \equiv maximizing log score in sample
- No guarantee of out-of-sample performance
- **FBF ensures** accurate *out-of-sample* performance according to any given score/loss

Focused Bayesian Prediction

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

æ

< 一型

.

• Five loss functions considered:

- Five loss functions considered:
 - Three scores:

- Five loss functions considered:
 - Three scores:
 - Log score

- Five loss functions considered:
 - Three scores:
 - Log score
 - Continuous rank probability score (CRPS)

- Five loss functions considered:
 - Three scores:
 - Log score
 - Continuous rank probability score (CRPS)
 - ORPS for lower tail (appropriate for a financial return)

- Five loss functions considered:
 - Three scores:
 - Log score
 - Continuous rank probability score (CRPS)
 - ORPS for lower tail (appropriate for a financial return)
 - Two auxiliary predictive-based losses

- Five loss functions considered:
 - Three scores:
 - Log score
 - Continuous rank probability score (CRPS)
 - ORPS for lower tail (appropriate for a financial return)
 - Two auxiliary predictive-based losses
 - Adopting the flavour of auxiliary model-based ABC

• Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$
- Produce approximate posterior, $p(\theta|\eta(y_{1:T}))$

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$
- Produce approximate posterior, $p(\theta|\eta(y_{1:T}))$
- Aim in auxiliary model-based ABC?

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$
- Produce approximate posterior, $p(\theta|\eta(y_{1:T}))$
- Aim in auxiliary model-based ABC?
- Choose $q(y_{1:T}|m{eta})$ to capture features of $p(y_{1:T}|m{ heta})$

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$
- Produce approximate posterior, $p(\theta|\eta(y_{1:T}))$
- Aim in auxiliary model-based ABC?
- Choose $q(y_{1:T}|\boldsymbol{\beta})$ to capture features of $p(y_{1:T}|\boldsymbol{\theta})$
- If $q(y_{1:T}|\boldsymbol{\beta})$ 'nests' (a correctly specified) $p(y_{1:T}|\boldsymbol{\theta})$

副下 《唐下 《唐下

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$
- Produce approximate posterior, $p(\theta|\eta(y_{1:T}))$
- Aim in auxiliary model-based ABC?
- Choose $q(y_{1:T}|\boldsymbol{\beta})$ to capture features of $p(y_{1:T}|\boldsymbol{\theta})$
- If $q(y_{1:T}|\boldsymbol{\beta})$ 'nests' (a correctly specified) $p(y_{1:T}|\boldsymbol{\theta})$
 - $\Rightarrow \eta(y_{1:T}) = \widehat{oldsymbol{eta}}_{MLE}$ is asymptotically sufficient for $oldsymbol{ heta}$

・ 国 と ・ 国 と ・ 国 と …

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$
- Produce approximate posterior, $p(\theta|\eta(y_{1:T}))$
- Aim in auxiliary model-based ABC?
- Choose $q(y_{1:T}|m{eta})$ to capture features of $p(y_{1:T}|m{ heta})$
- If $q(y_{1:T}|\boldsymbol{\beta})$ 'nests' (a correctly specified) $p(y_{1:T}|\boldsymbol{\theta})$
 - $\Rightarrow \eta(y_{1:T}) = \widehat{\beta}_{MLE}$ is asymptotically sufficient for θ • $\Rightarrow p(\theta|\eta(y_{1:T})) = p(\theta|y_{1:T})$ (for large T)

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

- Drovandi et al. (2011, 2015, 2018); Creel and Kristensen (2015); Drovandi (2018); Martin et al. (2018)
- Specify a tractable $q(y_{1:T}|\boldsymbol{\beta})$ that approximates $p(y_{1:T}|\boldsymbol{\theta})$
- $\widehat{oldsymbol{eta}}_{MLE}$ \Rightarrow 'summary statistic' $\eta(y_{1:T})$
- Produce approximate posterior, $p(\theta|\eta(y_{1:T}))$
- Aim in auxiliary model-based ABC?
- Choose $q(y_{1:T}|\boldsymbol{\beta})$ to capture features of $p(y_{1:T}|\boldsymbol{\theta})$
- If $q(y_{1:T}|\boldsymbol{\beta})$ 'nests' (a correctly specified) $p(y_{1:T}|\boldsymbol{\theta})$

•
$$\Rightarrow \eta(y_{1:T}) = \widehat{\beta}_{MLE}$$
 is asymptotically sufficient for θ
• $\Rightarrow p(\theta|\eta(y_{1:T})) = p(\theta|y_{1:T})$ (for large T)
• \Rightarrow 'ideal' $q(y_{1:T}|\beta)$ is highly parameterized

Auxiliary predictive-based loss function

• But that do we know about prediction??

Auxiliary predictive-based loss function

- But that do we know about prediction??
- Simple parsimoneous models often forecast better than complex, highly parameterized (but incorrect) models....

Auxiliary predictive-based loss function

- But that do we know about prediction??
- Simple parsimoneous models often forecast better than complex, highly parameterized (but incorrect) models....
- ⇒ Approach in auxiliary-model based focused Bayesian prediction?
- But that do we know about **prediction**??
- Simple parsimoneous models often forecast better than complex, highly parameterized (but incorrect) models....
- ⇒ Approach in auxiliary-model based focused Bayesian prediction?
- Pick a simple parsimoneous 'auxiliary predictive': $q(y_{t+1}|y_{1:t}, \beta)$

- But that do we know about **prediction**??
- Simple parsimoneous models often forecast better than complex, highly parameterized (but incorrect) models....
- ⇒ Approach in auxiliary-model based focused Bayesian prediction?
- Pick a simple parsimoneous 'auxiliary predictive': $q(y_{t+1}|y_{1:t}, \beta)$
- And select $p(y_{t+1}|y_{1:t}, \theta^i)$ such that its predictive performance closely matches that of $q(y_{t+1}|y_{1:t}, \beta)$ over the test period

• i.e. select
$$p(y_{t+1}|y_{1:t}, \theta^i)$$
 such that:

$$\frac{1}{n}\sum_{i=0}^{n-1} \left| p(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \theta^i) - q(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \widehat{\beta}) \right|$$

$$<~$$
 the **lowest** ($lpha$ %, say) quantile

• i.e. select
$$p(y_{t+1}|y_{1:t}, \theta^i)$$
 such that:

$$\frac{1}{n}\sum_{i=0}^{n-1} \left| p(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \theta^{i}) - q(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \widehat{\beta}) \right|$$

< the **lowest** (α %, say) quantile

• i.e. such that loss (defined by this predictive difference) is small

• i.e. select
$$p(y_{t+1}|y_{1:t}, \theta^i)$$
 such that:

$$\frac{1}{n}\sum_{i=0}^{n-1} \left| p(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \theta^{i}) - q(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \widehat{\beta}) \right|$$

< the **lowest** (α %, say) quantile

- i.e. such that loss (defined by this predictive difference) is small
- Choose q(y_{t+1}|y_{1:t}, β) to be a generalized autoregressive conditionally heteroscedastic (GARCH) model

• i.e. select
$$p(y_{t+1}|y_{1:t}, \theta^i)$$
 such that:

$$\frac{1}{n}\sum_{i=0}^{n-1} \left| p(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \theta^{i}) - q(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \widehat{\beta}) \right|$$

< the **lowest** (α %, say) quantile

- i.e. such that loss (defined by this predictive difference) is small
- Choose q(y_{t+1}|y_{1:t}, β) to be a generalized autoregressive conditionally heteroscedastic (GARCH) model
 - with Student t errors (work-horse of empirical finance)

• i.e. select
$$p(y_{t+1}|y_{1:t}, \theta^i)$$
 such that:

$$\frac{1}{n}\sum_{i=0}^{n-1} \left| p(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \theta^{i}) - q(y_{(\tau+i)+1}|y_{1:(\tau+i)}, \widehat{\beta}) \right|$$

< the **lowest** (α %, say) quantile

- i.e. such that loss (defined by this predictive difference) is small
- Choose q(y_{t+1}|y_{1:t}, β) to be a generalized autoregressive conditionally heteroscedastic (GARCH) model
 - with Student *t* errors (work-horse of empirical finance)
 - with normal errors (expected to be a poorer 'benchmark')

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

æ

イロト イヨト イヨト イヨト

• Display draws from each $\prod_{\varepsilon_n}[P|s]$

æ

- 4 同 ト - 4 目 ト

- Display draws from each $\prod_{\varepsilon_n}[P|s]$
- (associated with one particular out-of-sample time period)

- Display draws from each $\prod_{\varepsilon_n}[P|s]$
- (associated with one particular out-of-sample time period)
- (Using the notation *s* for all five posteriors)

- Display draws from each $\prod_{\varepsilon_n} [P|s]$
- (associated with one particular out-of-sample time period)
- (Using the notation *s* for all five posteriors)
- Estimate: $\overline{P}_{\varepsilon_n}[.|y_{1:t}] = \int_{\mathcal{P}} P[.|y_{1:t}] d\Pi_{\varepsilon_n}[P|s]$

- Display draws from each $\prod_{\varepsilon_n} [P|s]$
- (associated with one particular out-of-sample time period)
- (Using the notation *s* for all five posteriors)
- Estimate: $\overline{P}_{\varepsilon_n}[.|y_{1:t}] = \int_{\mathcal{P}} P[.|y_{1:t}] d\Pi_{\varepsilon_n}[P|s]$
- Roll the whole process forward:

- Display draws from each $\prod_{\varepsilon_n} [P|s]$
- (associated with one particular out-of-sample time period)
- (Using the notation *s* for all five posteriors)
- Estimate: $\overline{P}_{\varepsilon_n}[.|y_{1:t}] = \int_{\mathcal{P}} P[.|y_{1:t}] d\Pi_{\varepsilon_n}[P|s]$
- Roll the whole process forward:
- Compute (over 100 (truely) out-of-sample periods):

- Display draws from each $\prod_{\varepsilon_n} [P|s]$
- (associated with one particular out-of-sample time period)
- (Using the notation *s* for all five posteriors)
- Estimate: $\overline{P}_{\varepsilon_n}[.|y_{1:t}] = \int_{\mathcal{P}} P[.|y_{1:t}] d\Pi_{\varepsilon_n}[P|s]$
- Roll the whole process forward:
- Compute (over 100 (truely) out-of-sample periods):
- Median:

- Display draws from each $\prod_{\varepsilon_n} [P|s]$
- (associated with one particular out-of-sample time period)
- (Using the notation *s* for all five posteriors)
- Estimate: $\overline{P}_{\varepsilon_n}[.|y_{1:t}] = \int_{\mathcal{P}} P[.|y_{1:t}] d\Pi_{\varepsilon_n}[P|s]$
- Roll the whole process forward:
- Compute (over 100 (truely) out-of-sample periods):
- Median:
 - log scores; CRPS scores; tail-weighted CRPS scores

- Display draws from each $\prod_{\varepsilon_n} [P|s]$
- (associated with one particular out-of-sample time period)
- (Using the notation *s* for all five posteriors)
- Estimate: $\overline{P}_{\varepsilon_n}[.|y_{1:t}] = \int_{\mathcal{P}} P[.|y_{1:t}] d\Pi_{\varepsilon_n}[P|s]$
- Roll the whole process forward:
- Compute (over 100 (truely) out-of-sample periods):
- Median:
 - log scores; CRPS scores; tail-weighted CRPS scores
- Compare with results for exact (MCMC) mis-specified: $p(y_{t+1}|y_{1:t})$

Posterior distributions

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Posterior distributions

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

• The loss function based on matching the Student t GARCH (auxiliary) predictive **yields the most accurate predictive** according to all measures of predictive accuracy

- The loss function based on matching the Student t GARCH (auxiliary) predictive **yields the most accurate predictive** according to all measures of predictive accuracy
- The loss function based on the (raw) CRPS score is **second best** - according to all measures of predictive accuracy

- The loss function based on matching the Student t GARCH (auxiliary) predictive **yields the most accurate predictive** according to all measures of predictive accuracy
- The loss function based on the (raw) CRPS score is **second best** - according to all measures of predictive accuracy
- The loss function based on matching the normal GARCH (auxiliary) predictive does not as anticipated perform well

- The loss function based on matching the Student t GARCH (auxiliary) predictive **yields the most accurate predictive** according to all measures of predictive accuracy
- The loss function based on the (raw) CRPS score is **second best** - according to all measures of predictive accuracy
- The loss function based on matching the normal GARCH (auxiliary) predictive does not as anticipated perform well
- The exact but mis-specified predictive is in the lower half of the ranking in all cases.....

- The loss function based on matching the Student t GARCH (auxiliary) predictive **yields the most accurate predictive** according to all measures of predictive accuracy
- The loss function based on the (raw) CRPS score is **second best** - according to all measures of predictive accuracy
- The loss function based on matching the normal GARCH (auxiliary) predictive does not as anticipated perform well
- The exact but mis-specified predictive is in the lower half of the ranking in all cases.....
- So we are gaining in terms of predictive accuracy via FBP

- The loss function based on matching the Student t GARCH (auxiliary) predictive **yields the most accurate predictive** according to all measures of predictive accuracy
- The loss function based on the (raw) CRPS score is **second best** - according to all measures of predictive accuracy
- The loss function based on matching the normal GARCH (auxiliary) predictive does not as anticipated perform well
- The exact but mis-specified predictive is in the lower half of the ranking in all cases.....
- So we are gaining in terms of predictive accuracy via FBP
- A larger number of out-of-sample evaluations is needed for precise conclusions.....(the particle filtering takes time.....)

• New loss-based approach to Bayesian forecasting

David Frazier, Ruben Loaiza Maya and GaelModel-Acentric, Focused Bayesian Predictio

-∢∃>

- New loss-based approach to Bayesian forecasting
- \bullet Appropriate for an $\mathcal M\text{-}\mathsf{open}$ world

- New loss-based approach to Bayesian forecasting
- Appropriate for an $\mathcal M$ -open world
- (in which model-mis-specification is explicitly acknowledged)

- New loss-based approach to Bayesian forecasting
- Appropriate for an $\mathcal M$ -open world
- (in which model-mis-specification is explicitly acknowledged)
- Focused Bayesian prediction does improve predictive performance under model mis-specification

- New loss-based approach to Bayesian forecasting
- Appropriate for an $\mathcal M$ -open world
- (in which model-mis-specification is explicitly acknowledged)
- Focused Bayesian prediction does improve predictive performance under model mis-specification
- Relative to an exact (but mis-specified) predictive

- New loss-based approach to Bayesian forecasting
- Appropriate for an $\mathcal M$ -open world
- (in which model-mis-specification is explicitly acknowledged)
- Focused Bayesian prediction does improve predictive performance under model mis-specification
- Relative to an exact (but mis-specified) predictive
- (At least based on this small numerical exercise....)

- New loss-based approach to Bayesian forecasting
- Appropriate for an $\mathcal M$ -open world
- (in which model-mis-specification is explicitly acknowledged)
- Focused Bayesian prediction does improve predictive performance under model mis-specification
- Relative to an exact (but mis-specified) predictive
- (At least based on this small numerical exercise....)
- Important shift away from Bissiri, Holmes and Walker (2016):

- New loss-based approach to Bayesian forecasting
- Appropriate for an $\mathcal M$ -open world
- (in which model-mis-specification is explicitly acknowledged)
- Focused Bayesian prediction does improve predictive performance under model mis-specification
- Relative to an exact (but mis-specified) predictive
- (At least based on this small numerical exercise....)
- Important shift away from Bissiri, Holmes and Walker (2016):
- "A general framework for updating belief distributions"

• Via **BHW**: could specify loss via a particular $S_n(P, F)$

э

- 4 同 ト - 4 三 ト - 4 三 ト

- Via **BHW**: could specify loss via a particular $S_n(P, F)$
- And update prior beliefs $\pi(P)$ as:

 $\pi[P|s] \propto \exp\left[-nS_n(P,F)\right]\pi[P]$
- Via **BHW**: could specify loss via a particular $S_n(P, F)$
- And update prior beliefs $\pi(P)$ as:

$$\pi[P|s] \propto \exp\left[-nS_n(P,F)\right] \pi[P]$$

• \Rightarrow effectively assumes a **particular model** for $S_n(P, F)$:

$$g_n(s|P) \propto \exp[-nS_n(P,F)]$$

- Via **BHW**: could specify loss via a particular $S_n(P, F)$
- And update prior beliefs $\pi(P)$ as:

$$\pi[P|s] \propto \exp\left[-nS_n(P,F)\right]\pi[P]$$

• \Rightarrow effectively assumes a **particular model** for $S_n(P, F)$:

$$g_n(s|P) \propto \exp[-nS_n(P,F)]$$

• We make no such assumption \Rightarrow allow the data to detemine $g_n(s|P)$

- Via **BHW**: could specify loss via a particular $S_n(P, F)$
- And update prior beliefs $\pi(P)$ as:

$$\pi[P|s] \propto \exp\left[-nS_n(P,F)\right]\pi[P]$$

• \Rightarrow effectively assumes a **particular model** for $S_n(P, F)$:

$$g_n(s|P) \propto \exp[-nS_n(P,F)]$$

- We make no such assumption \Rightarrow allow the data to detemine $g_n(s|P)$
- With predictive accuracy guaranteed asymptotically

- Via **BHW**: could specify loss via a particular $S_n(P, F)$
- And update prior beliefs $\pi(P)$ as:

$$\pi[P|s] \propto \exp\left[-nS_n(P,F)\right]\pi[P]$$

• \Rightarrow effectively assumes a **particular model** for $S_n(P, F)$:

$$g_n(s|P) \propto \exp[-nS_n(P,F)]$$

- We make no such assumption \Rightarrow allow the data to detemine $g_n(s|P)$
- With predictive accuracy guaranteed asymptotically
- More to come.....