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Introduction to Deep Learning

• Machine learning falls into the algorithmic class [Breiman,
2001] of reduced model estimation procedures which treats
the data generation process as an unknown.

• Deep learning is a form of machine learning that uses
hierarchical layers of abstraction to represent high-dimensional
nonlinear predictors.

• Traditional fit metrics, such as R2, t−values, p-values, and
the notion of statistical significance has been replaced in the
machine learning literature by out-of-sample forecasting and
understanding the bias-variance trade-off.

• Deep learning is data-driven and focuses on finding structure
in large data sets. The main tools for variable or predictor
selection are regularization and dropout.
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Deep Architectures in TensorFlow

feed forward auto-encoder convolution

recurrent Long / short term memory neural Turing machines

Figure: Most commonly used deep learning architectures for modeling. Source:
http://www.asimovinstitute.org/neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo
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Growth of TensorFlow

Tensorflow	
  build	
  for	
  Intel	
  Xeon	
  Phi:	
  
h6ps://github.com/tensorflow/
tensorflow.git	
  	
  

Source	
  :	
  Andrej	
  Karpathy‘s	
  arXiv-­‐sanity	
  database	
  

• Python examples: https://github.com/Quiota/tensorflow

• R examples: 2017 Google Summer of Code Statistical Computing
Project in R (with Lan Wei), https://github.com/lweicdsor/OSTSC
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Machine Learning

• Machine learning addresses a fundamental prediction problem:
Construct a nonlinear predictor, Ŷ (X ), of an output, Y , given
a high dimensional input matrix X = (X1, . . . ,XP) of P
variables.

• Machine learning can be simply viewed as the study and
construction of an input-output map of the form

Y = F (X ) where X = (X1, . . . ,XP).

• The output variable, Y , can be continuous, discrete or mixed.

• For example, in a classification problem, F : X → Y where
Y ∈ {1, . . . ,K} and K is the number of categories. When Y
is a continuous vector and f is a semi-affine function, then we
recover the linear model

Y = AX + b.
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Deep Predictors

Definition (Deep Predictor)

A deep predictor is a particular class of multivariate function F (X )
constructed using a sequence of L layers via a composite map

Ŷ (X ) := Fθ(X ) =
(
f LW L,bL . . . ◦ f

1
W 1,b1

)
(X ).

• f l
W l ,bl

(X ) := f l(W lX + bl) is a semi-affine function, where f l

is univariate and continuous.

• The parameter set θ = (W , b), where W = (W 1, . . . ,W L)
and b = (b1, . . . , bL) are weight matrices and offsets
respectively.
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Deep Predictors

• The structure of a deep prediction rule can be written as a
hierarchy of L− 1 unobserved layers, Z l , given by

Ŷ (X ) = f L(ZL−1),

Z 0 = X ,

Z 1 = f 1
(
W 1Z 0 + b1

)
,

Z 2 = f 2
(
W 2Z 1 + b2

)
,

. . .

ZL−1 = f L−1
(
W L−1ZL−2 + bL−1

)
.

• When Y is numeric, the output function f L(X ) is given by the
semi-affine function f L(X ) := f L

W L,bL
(X ).

• When Y is categorical, f L(X ) is a softmax function.

• f (x) are ’activation’ functions, e.g. tanh(x), rectified linear
unit max(x , 0).
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Why use hidden layers?

Problem: classify whether the curve is red or blue Solution using a linear method

Figure: Image source: Chris Olah, Google Brain.
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Why use hidden layers?
Answer: To perform translations of the input space that enable
linear separability.

Transformation of the input space Result of classification using a hidden layer

using a hidden layer

Figure: Image source: Chris Olah, Google Brain.
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Bayesian Deep Learnining

• Training data of input-output pairs D = {yi , xi}Ni=1

• The goal is to find the deep predictor Ŷ = Fθ̂(X )

• The loss function is the negative log probability
L(Y , Ŷ ) = − log p(Y | Ŷ )

• Deep predictors are maximum a posteriori (MAP) estimators

p(θ|D) ∝ p(Y |Yθ(X ))p(θ).
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Bayesian Deep Learning

• Training requires the solution of a regularized non-linear
optimization problem

θ̂ := argmin
θ
−log p(θ|D) (1)

≈
n∑

i=1

L(yi , yθ(xi )) + λφ(θ). (2)

• φ(θ) introduces a bias-variance tradeoff controlled by a
regularization parameter λ

• The overall objective function is closely related to ridge
regression with a g-prior [Polson & Sokolov, 2017]

• See Gal, Uncertainty Quantification in Deep Learning, Ph.D
Thesis, University of Cambridge, 2016.
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Drop-Out

• Dropout is a model or variable selection technique which
randomly removes inputs to a layer with a given probability θ
[Srivastava, 2014].
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Drop-Out

• The dropout2 architecture with stochastic search is

D l
i ∼ Ber(θ),

Z̃ l = D l ? Z l , 1 ≤ l < L,

Z l = f l(W l Z̃ l−1 + bl).

2The probability, θ, can be viewed as a further hyper-parameter (like λ) which can
be tuned via cross-validation.
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Spatial-Temporal Representation

• Gives observations Yt = Y (s, t) at locations s := s1, . . . , sN
and time t

• Cressie and Wikle (2015) provide an introductory overview of
spatio-temporal modeling

• In a statistical framework, the non-parametric approach seeks
to approximate the unknown map F using a family of spatial
basic functions Φ(s) and random temporal effects w(t)

Ft(s) =
N∑

k=1

wk(t)φk(s)

• Gaussian processes, for spatio-temporal analysis, are
computationally intractable and assumes prior knowledge of
the covariance function.

• Convolution methods address these issues and are, in fact, a
single layer convolution network.



Introduction Deep Learning Spatio-Temporal Modeling Bayesian Inference Climate Risk

Space-Temporal Representation

Figure: (left) Spatial basis functions on R2. (right) Y = Ft(s) at time t0.
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Space-Temporal Prediction with Deep Learning

• The spatio-temporal prediction can be written as

Y = x tt+h :=

 x1,t+h
...

xn,t+h

 ,

• x tt+h is the forecast of the random field at time t + h, given
measurements of x up to time t.

• The predictors are

x ≡ x t = vec

 x1,t−k ... x1,t
...

...
...

xn,t−k ... xn,t

 .
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Spatial-Temporal Neural Networks

• Construct layers as a time ”filter” given by

z l+1
i = f

(
Nl∑
i=1

(w l+1
i z li + bl+1

i )

)
, z0 = x t

• f is the activation function and Nl is the number of neurons
in layer l .
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Space-Time Diagram of Traffic
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Traffic Prediction

• Predict the traffic flow speeds at loop detector locations:

Y = x tt+h =

 x1,t+h
...

xn,t+h


• x tt+h is the forecast of traffic flow speeds at time t + h, given

measurements up to time t.

• n is the number of locations on the network (loop detectors)
and

• xi ,t is the cross-section traffic flow speed at location i at time
t
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Spatial-Temporal Representation in HFT

Figure: A space-time diagram showing the double auction The contemporaneous liquidities at each price level,
xi,t , are represented by the color scale: red denotes a high value of liquidity imbalance and yellow the converse.
The auction book are observed to polarize prior to a price movement.
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HFT Prediction

• Predict the prices at different levels in a (double) auction:

Y = ptt+h =

 p1,t+h
...

pn,t+h


• ptt+h is the forecast of price changes at time t + h, given

measurements of up to time t.

• n is the number of price levels and

• xi ,t is the cross-section liquidity at level i at time t
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Model Configuration3

Activation function: f ∈ {ReLU(x), softmax(x)}
Number of hidden layers: L ∈ {3, . . . , 7}

Number of nodes in each layer: Nl ∈ {50, . . . , 200}
L1 regularization: λ1 ∈ {10−3, 10−2, 10−1}
L2 regularization: λ2 ∈ {10−3, 10−2, 10−1}

Learning rate: γ ∈ {10−4, 10−3, 10−2}

3
Times series cross-validation is performed using an unbalanced validation and test set, each of size 2× 105

observations. Each experiment is run for 2500 epochs with a mini-batch size of 32 drawn from the training set of
298,062 observations, containing 411 variables chosen from the elastic-net method.



Introduction Deep Learning Spatio-Temporal Modeling Bayesian Inference Climate Risk

The Bias-Variance Tradeoff

(a) DNN F1-score of Ŷ = 1 (b) DNN F1-score of Ŷ = 0 (b) DNN F1-score of Ŷ = −1.

Table: The learning curves of the deep learner are used to assess the bias-variance tradeoff and are shown for
(left) downward, (middle) neutral, or (right) upward price prediction. The variance is observed to reduce with an
increased training set size and shows that the deep learning is not-overfitting. The bias on the test set is also
observed to reduce with increased training set size.
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Receiver Operator Characteristics

(a) ROC curves of Ŷ = 1 (b) ROC curves of Ŷ = 0 (b) ROC curves of Ŷ = −1.

Table: The Receiver Operator Characteristic (ROC) curves of the deep learner and the elastic net method are
shown for (left) downward, (middle) neutral, or (right) upward next price movement prediction.
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Model Sensitivity

Hidden layers DNN EL-DNN

1 0.5057967179 0.5691572606
2 0.5340439642 0.5555855057
3 0.5724887077 0.578907192
4 0.5819864454 0.6474221372
5 0.5794411575 0.65784692
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Prediction Example
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Review of Bayesian Inference
• Given a set of models {Mk}Kk=1 to explain the data D, which

model is ’best’?
• Estimate the posterior distribution over models:

p(Mk |D) =

∫
θk∈Θk

p(D|θk ,Mk)p(θk |Mk)dθkp(Mk)∑
j p(D|Mj)p(Mj)

.

• Model evidence is a marginal likelihood function over the
space of models

p(D|Mk) =

∫
θk∈Θk

p(D|θk ,Mk)p(θk |Mk)dθk

• We maintain a belief over which parameters in the model we
consider plausible by reasoning with the posterior

p(θk |D,Mk) =
p(D|θk ,Mk)p(θk |Mk)

p(D|Mk)
.

• Choose the parameter value which maximizes the posterior
distribution (MAP).
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Occam’s Razor

• The model evidence performs a vital role in the prevention of
model overfitting.

• Bayesian inference therefore automates the determination of
model complexity using the training data D alone.

Figure: The model evidence p(D|m) performs a vital role in the prevention of model overfitting.

Models that are too simple are unlikely to generate the data set. Models that are too complex can

generate many possible data sets, but they are unlikely to generate any particular data set at random.
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Model Selection and Averaging

• We can compare any two models via the posterior odds. If
there are two models M1 and M2 then this ratio is given by

p(M1|D)

p(M2|D)
=

p(M1)p(D|M1)

p(M2)p(D|M2)

• Prior odds multiplied by the ratio of the evidence for each
model (Bayes factor for M1).

• Or Bayesian model averaging (BMA) over all models

p(θk |D) =
K∑

k=1

p(Mk |D)p(θk |D,Mk)
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Online learning

• An important aspect of Bayesian learning is the capacity to
update the posterior in response to the arrival of new data D′.

• The posterior over D now becomes the prior, and the new
posterior is updated to

p(θk |D′,D,Mk) =
p(D′|θk ,Mk)p(θk |D,Mk)∫

θk∈Θk
p(D′|θk ,Mk)p(θk |D,Mk)dθ

.

• This mechanism for updating our beliefs in response to new
data is often referred to as online learning.
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Bayesian Model Averaging

• Bayesian Model Averaging (BMA) approach for climate model
ensemble output [Leamer,1978; Raftery et al., 2005; Berrocal
et al., 2007, Bhat el al. 2011]

• Y ≡ Y (s, t) is the projection quantity

• fk ≡ fk(s, t) and hk ≡ hk(s, t) are model forecasts and
hindcasts for the projection quantity

• X is the historical spatial data used as an input to the model
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Bayesian Model Averaging: simple case

• Model average distribution of Y conditional on the model
forecasts

p(Y |f1, . . . , fK ) =
K∑

k=1

wkgk(Y |fk)

• The model weights
∑K

k=1 wk =
∑K

k=1 p(Mk |X ) = 1

• Assume that gk(Y |fk) is Gaussian

y |fk ∼ N(ak + bk fk , σ
2
k)

• Mean of p(Y |f1, . . . , fK ):

E[Y |f1, . . . , fK ] =
K∑

k=1

wk(ak + bk fk)
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Bayesian Model Averaging: Gaussian Processes

• Bhat et al. (2011)4 use a linear model to regress Y for each
hindcast hk over all (s, t)

Y = ak + bkhk + δk + εk

• εk represents non-spatial error and i.i.d. Gaussian for model
Mk .

• δk represents space-time dependence for model Mk .

• Model δk as a zero mean linear Gaussian process
δk |φks , φkt , κk ∼ N(0,KkKT

k )

Kk(i , j) =
√
κkexp{−

||si − uj ||2

(φks )2
} · exp{−

||ti − vj ||2

(φkt )2
}

4
Bhat, K. S., Haran, M., Terando, A. and Keller, K., Climate Projections Using Bayesian Model Averaging

and Space–Time Dependence, Journal of Agricultural, Biological, and Environmental Statistics, Dec 2010.
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Bhat et al. Results
• Ensemble of 20 AR4 GCM hindcasts and forecasts
• GISS historical data gridded to 2 Deg by 2 Deg cells

referenced annually between 1900 and 2000
• 1,225,332 space-time locations

Figure: BMA predictive pdf for global mean surface temperature anomaly in 2100 (solid black line) and the
twenty components for each GCM forecast (gray lines) under the A1B scenario. Scenario A1B assumes strong
economic growth, a globalized economy with converging income levels between nations, a global population of 9
million in 2050 but stable or decreasing afterwards, and reliance on both fossil-fuels and non-fossil energy sources.
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Deep Learning Approach: A potential direction

• For each dynamic model, find the map over all (s, t) pairs.

Y = Fθ(hk)

• We arrive at a deep learner Ŷ k
θ̂

(x) for mapping all dynamic
model outputs to historical observations Y

• Distribution of gk(Y |fk , θ̂) given by DL as a MAP estimator

• Able to express high degree of non-linearity between dynamic
model outputs and the response

• Spatial-temporal structure captured without assuming a data
generation process for the error and spatial covariance
structure
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Summary

• Predicting spatio-temporal flows is a challenging problem as
dynamic spatio-temporal data possess underlying complex
interactions and nonlinearities

• Deep learning applies layers of hierarchical hidden variables to
capture these interactions and nonlinearities without using a
data generating process.

• Deep learning could be embedded in a Bayesian model
averaged forecast:

• Apply non-linear weighted GCM models
• Weights are represented by posterior probabilities and can be

updated through online learning
• No reliance on a data generation process and model

spatial-structure
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