< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

On the Thom conjecture in $\mathbb{C}P^3$

Sašo Strle Joint with: Daniel Ruberman and Marko Slapar

Low Dimensional Topology and Gauge Theory Casa Matemática Oaxaca

Oaxaca, August 11, 2017

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ● の Q @

Thom conjecture

Conjecture (Thom)

A nonsingular algebraic hypersurface V_d of degree d in \mathbb{CP}^{n+1} is the simplest representative of its homology class.

Thom conjecture

Conjecture (Thom)

A nonsingular algebraic hypersurface V_d of degree d in \mathbb{CP}^{n+1} is the simplest representative of its homology class.

Some results:

- n = 1: [Kronheimer-Mrowka, 1994] the measure of complexity is the genus of the surface or equivalently b₁
- symplectic Thom conjecture: symplectic curves are genus minimizing in their homology class in symplectic 4-manifolds Morgan-Szabó-Taubes, 1996; [Ozsváth-Szabó, 2000]

Taut submanifolds

Question

What is a good measure of complexity for n > 1?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Taut submanifolds

Question

What is a good measure of complexity for n > 1?

Homology and homotopy groups of $V_d \subset \mathbb{CP}^{n+1}$ are constrained by the Lefschetz Hyperplane Theorem:

 $H_k(\mathbb{C}P^{n+1}, V_d) = 0, \ \pi_k(\mathbb{C}P^{n+1}, V_d) = 0, \ \text{ for } k \le n.$

Hence: only $b_n(V_d)$ is not determined by the ambient manifold.

Taut submanifolds

Question

What is a good measure of complexity for n > 1?

Homology and homotopy groups of $V_d \subset \mathbb{CP}^{n+1}$ are constrained by the Lefschetz Hyperplane Theorem: $H_k(\mathbb{CP}^{n+1}, V_d) = 0, \ \pi_k(\mathbb{CP}^{n+1}, V_d) = 0, \ \text{for } k \leq n.$

Hence: only $b_n(V_d)$ is not determined by the ambient manifold.

Definition

 $N^{2n} \subset M^{2n+2}$ is **taut** if $\pi_k(E, \partial E) = 0$ for $k \leq n$, where E is the closed complement of a tubular neighborhood of N in M.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Taut submanifolds

Properties:

• $V_d \subset \mathbb{CP}^{n+1}$ is taut. [Thomas-Wood, 1974]

Taut submanifolds

- $V_d \subset \mathbb{C}\mathrm{P}^{n+1}$ is taut. [Thomas-Wood, 1974]
- Any class α ∈ H_{2n}(M²ⁿ⁺²) has a taut representative and the homology of any such representative N is determined by H_{*}(M) and by b_n(N) ≥ b_n(M). [Kato-Matsumoto, 1972]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Taut submanifolds

- $V_d \subset \mathbb{C}\mathrm{P}^{n+1}$ is taut. [Thomas-Wood, 1974]
- Any class α ∈ H_{2n}(M²ⁿ⁺²) has a taut representative and the homology of any such representative N is determined by H_{*}(M) and by b_n(N) ≥ b_n(M). [Kato-Matsumoto, 1972]
- If j : N → M is taut, then it is n-connected. A partial converse: If j is n-connected, n > 1, then j is concordant to a taut embedding. [Quinn, 1974]

Taut submanifolds

- $V_d \subset \mathbb{CP}^{n+1}$ is taut. [Thomas-Wood, 1974]
- Any class α ∈ H_{2n}(M²ⁿ⁺²) has a taut representative and the homology of any such representative N is determined by H_{*}(M) and by b_n(N) ≥ b_n(M). [Kato-Matsumoto, 1972]
- If j : N → M is taut, then it is n-connected. A partial converse: If j is n-connected, n > 1, then j is concordant to a taut embedding. [Quinn, 1974]
- If N is taut, so is $N \# \mathbb{S}^n \times \mathbb{S}^n$, where $\mathbb{S}^n \times \mathbb{S}^n \subset \mathbb{B}^{n+1} \times \mathbb{B}^{n+1}$. The signature $\sigma(N) = \sigma(\alpha)$ is determined by M and α .

Taut submanifolds

- $V_d \subset \mathbb{C}\mathrm{P}^{n+1}$ is taut. [Thomas-Wood, 1974]
- Any class α ∈ H_{2n}(M²ⁿ⁺²) has a taut representative and the homology of any such representative N is determined by H_{*}(M) and by b_n(N) ≥ b_n(M). [Kato-Matsumoto, 1972]
- If j : N → M is taut, then it is n-connected. A partial converse: If j is n-connected, n > 1, then j is concordant to a taut embedding. [Quinn, 1974]
- If N is taut, so is $N \# \mathbb{S}^n \times \mathbb{S}^n$, where $\mathbb{S}^n \times \mathbb{S}^n \subset \mathbb{B}^{n+1} \times \mathbb{B}^{n+1}$. The signature $\sigma(N) = \sigma(\alpha)$ is determined by M and α .
- Hence: the complexity b_n(α) of α is given by the minimal b_n(N) for taut N and it satisfies b_n(α) ≥ |σ(α)|, b_n(M).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thom conjecture in \mathbb{CP}^{2m}

Theorem (Freedman, 1977)

For any $m \ge 2$, V_d is not minimal taut in \mathbb{CP}^{2m} for $d \in \mathbb{P}$, $d \ne 2, 3$ for m = 2, $d \ne 2$ for m = 3.

Thom conjecture in $\mathbb{C}\mathrm{P}^{2m}$

Theorem (Freedman, 1977)

For any $m \ge 2$, V_d is not minimal taut in \mathbb{CP}^{2m} for $d \in \mathbb{P}$, $d \ne 2, 3$ for m = 2, $d \ne 2$ for m = 3.

He shows that V_d splits as $N \# \ell(\mathbb{S}^{2m-1} \times \mathbb{S}^{2m-1})$, where N admits a taut embedding into \mathbb{CP}^{2m} homologous to V_d . Construction is via ambient surgery.

For *d* as in the theorem he reduces b_{2m-1} almost to the Thomas-Wood bound which comes from the *G*-signature theorem and realizes the bound with rationally taut submanifolds $(\pi_{2m-1}(E, \partial E)$ is *d* torsion) for which the same bound holds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Thom conjecture in $\mathbb{C}\mathrm{P}^3$

Looking for a simply connected $N_d \subset \mathbb{CP}^3$ representing $d[\mathbb{CP}^2] \in H_4(\mathbb{CP}^3)$ with minimal $b_2(N_d)$ that carries $H_2(\mathbb{CP}^3)$.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ● ●

Thom conjecture in $\mathbb{C}\mathrm{P}^3$

Looking for a simply connected $N_d \subset \mathbb{CP}^3$ representing $d[\mathbb{CP}^2] \in H_4(\mathbb{CP}^3)$ with minimal $b_2(N_d)$ that carries $H_2(\mathbb{CP}^3)$.

Nonsingular V_d has: $b_2(V_d) = d^3 - 4d^2 + 6d - 2 \sim d^3$, $\sigma(V_d) = \sigma(d) = -d(d^2 - 4)/3 \sim -d^3/3$ V_d is even (spin) for d even, odd for d odd

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Thom conjecture in $\mathbb{C}\mathrm{P}^3$

Looking for a simply connected $N_d \subset \mathbb{CP}^3$ representing $d[\mathbb{CP}^2] \in H_4(\mathbb{CP}^3)$ with minimal $b_2(N_d)$ that carries $H_2(\mathbb{CP}^3)$.

Nonsingular
$$V_d$$
 has:
 $b_2(V_d) = d^3 - 4d^2 + 6d - 2 \sim d^3$,
 $\sigma(V_d) = \sigma(d) = -d(d^2 - 4)/3 \sim -d^3/3$
 V_d is even (spin) for d even, odd for d odd

d	$b_2(V_d)$	$\sigma(V_d)$	V_d
1	1	1	$\mathbb{C}\mathrm{P}^2$
2	2	0	$\mathbb{S}^2 imes \mathbb{S}^2$
3	7	-5	$\mathbb{C}\mathrm{P}^2 \# 6 \overline{\mathbb{C}\mathrm{P}^2}$
4	22	-16	K3
5	53	-35	quintic

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Thom conjecture in $\mathbb{C}\mathrm{P}^3$

Theorem (Ruberman-Slapar-S)

 V_d is not minimal taut in its homology class for $d \ge 5$. There exist homologous taut submanifolds N_d with $b_2(N_d) \sim 3d^3/4$.

For d = 5 can split off 4 copies of $\mathbb{S}^2 \times \mathbb{S}^2$ from V_d , so $b_2(N_d) = 45$.

Thom conjecture in $\mathbb{C}\mathrm{P}^3$

Theorem (Ruberman-Slapar-S)

 V_d is not minimal taut in its homology class for $d \ge 5$. There exist homologous taut submanifolds N_d with $b_2(N_d) \sim 3d^3/4$.

For d = 5 can split off 4 copies of $\mathbb{S}^2 \times \mathbb{S}^2$ from V_d , so $b_2(N_d) = 45$.

The smallest $b_2(N_d)$ our method could possibly produce is $\sim d^3/2$ which yields $b_2/|\sigma| \sim 3/2$.

Sketch of proof

- Choose V_d so that a part of it carrying a large portion of H_2 can be pushed into the boundary of a 6-ball.
- Find within this part a large hyperbolic subspace of the intersection form.
- \bullet Show this subspace is supported by the sum of $\mathbb{S}^2\times\mathbb{S}^2$'s.
- Perform ambient surgery on the spheres to reduce b₂.

Model of V_d

Start with a singular variety W_d of degree d with a single isolated singularity, e.g. $z_0 z_1^{d-1} + z_2^d = z_3^d$. Let B be a small ball about the singularity within which W_d is the cone on $W_d \cap \partial B$.

Model of V_d

Start with a singular variety W_d of degree d with a single isolated singularity, e.g. $z_0 z_1^{d-1} + z_2^d = z_3^d$. Let B be a small ball about the singularity within which W_d is the cone on $W_d \cap \partial B$.

 W_d is the *d*-fold cyclic cover of \mathbb{CP}^2 branched over the singular sphere $z_0 z_1^{d-1} + z_2^d = 0$ with a unique singularity. The link of this singularity is the torus knot $T_{d-1,d}$.

Model of V_d

Start with a singular variety W_d of degree d with a single isolated singularity, e.g. $z_0 z_1^{d-1} + z_2^d = z_3^d$. Let B be a small ball about the singularity within which W_d is the cone on $W_d \cap \partial B$.

 W_d is the *d*-fold cyclic cover of \mathbb{CP}^2 branched over the singular sphere $z_0 z_1^{d-1} + z_2^d = 0$ with a unique singularity. The link of this singularity is the torus knot $T_{d-1,d}$.

In a nearby nonsingular hypersurface V_d (given by $z_0 z_1^{d-1} + z_2^d = \varepsilon z_0^d + z_3^d$) the cone is replaced by the Milnor fibre F_d which is the *d*-fold cover of \mathbb{B}^4 branched over the Seifert surface Σ_d for the torus knot. Then $b_2(V_d) = b_2(F_d) + d$ and F_d may be pushed into ∂B .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Hyperbolic subspace in $H_2(F_d)$

The intersection form of the Milnor fibre F_d is determined by the linking form θ_d of the Seifert surface Σ_d . In fact, there is a Seifert form Θ_d for $F_d \subset \partial B = \mathbb{S}^5$ defined on $H_2(F_d) = H_1(\Sigma_d) \otimes \mathbb{Z}^{d-1}$ that satisfies $\Theta_d = \theta_d \otimes \Lambda_{d-1}$.

[Durfee-Kauffman, 1975]

 $\Lambda_k \text{ is the } k \times k \text{ matrix of the form } \Lambda_k = \begin{vmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & -1 \\ 0 & \cdots & 0 & 0 & 1 \end{vmatrix}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Hyperbolic subspace in $H_2(F_d)$

 $H_1(\Sigma_d)$ contains a subgroup G of rank $r \sim d^2/4$ such that the restriction of the Seifert form θ_d to G has the form

0	0	0	1	*	*]
0	0	0	0	1	*
0	0	0	0	0	1
0	0	0	*	*	*
*	0	0	*	*	*
*	*	0	*	*	*

[Baader-Feller-Lewark-Liechti, 2015]

・ロット (雪) (日) (日) (日)

Hyperbolic subspace in $H_2(F_d)$

 $H_1(\Sigma_d)$ contains a subgroup G of rank $r \sim d^2/4$ such that the restriction of the Seifert form θ_d to G has the form

٢0	0	0	1	*	*]
0	0	0	0	1	*
0	0	0	0	0	1
0	0	0	*	*	*
*	0	0	*	*	*
_ *	*	0	*	*	*

[Baader-Feller-Lewark-Liechti, 2015]

Hence the restriction of the intersection form of F_d to $\widehat{G} = G \otimes \mathbb{Z}^{d-1}$ is equivalent to $\bigoplus_{(d-1)r/2} H$, where $H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Spherical classes

The classes in \widehat{G} may not be represented by spheres but by Wall's stable diffeomorphism result they are after stabilizing. For a closed 4-manifold M let $M_{\ell} = M \# \ell(\mathbb{S}^2 \times \mathbb{S}^2)$ be its stabilization.

Theorem (Wall, 1964)

Let M and N be simply connected closed 4-manifolds with isomorphic intersection forms. Then for some $\ell \ge 0$, M_{ℓ} and N_{ℓ} are diffeomorphic and any automorphism of the intersection form of M_{ℓ} is induced by a diffeomorphism.

Spherical classes

The classes in \widehat{G} may not be represented by spheres but by Wall's stable diffeomorphism result they are after stabilizing. For a closed 4-manifold M let $M_{\ell} = M \# \ell(\mathbb{S}^2 \times \mathbb{S}^2)$ be its stabilization.

Theorem (Wall, 1964)

Let M and N be simply connected closed 4-manifolds with isomorphic intersection forms. Then for some $\ell \ge 0$, M_{ℓ} and N_{ℓ} are diffeomorphic and any automorphism of the intersection form of M_{ℓ} is induced by a diffeomorphism.

Choose a standard model manifold realizing the intersection form of V_d : $M_d = \frac{b_2 + \sigma}{2} (\mathbb{S}^2 \times \mathbb{S}^2) \# |\sigma| \overline{\mathbb{CP}^2}$ for d > 1 odd, $M_d = \frac{8b_2 + 11\sigma}{16} (\mathbb{S}^2 \times \mathbb{S}^2) \# \frac{|\sigma|}{16} K3$ for d even. After stabilizing V_d , include the stabilizations in \widehat{G} and map this into the sum of $(\mathbb{S}^2 \times \mathbb{S}^2)$'s in stabilized M_d .

Ambient surgery

Suppose $\Sigma \subset F_d \subset \partial B = \mathbb{S}^5$ is a 2-sphere with $\Sigma \cdot \Sigma = 0$. Then the normal disk bundle of Σ in \mathbb{S}^5 is $\Sigma \times \mathbb{B}^2 \times \mathbb{B}^1$.

Ambient surgery

Suppose $\Sigma \subset F_d \subset \partial B = \mathbb{S}^5$ is a 2-sphere with $\Sigma \cdot \Sigma = 0$. Then the normal disk bundle of Σ in \mathbb{S}^5 is $\Sigma \times \mathbb{B}^2 \times \mathbb{B}^1$.

 Σ bounds a properly immersed 3-disk $D \subset B$ that can be made embedded. Pairs of double points in D of opposite sign may be cancelled using the Whitney trick. The number of double points of either sign may be increased by adding kinks into Σ .

Ambient surgery

Suppose $\Sigma \subset F_d \subset \partial B = \mathbb{S}^5$ is a 2-sphere with $\Sigma \cdot \Sigma = 0$. Then the normal disk bundle of Σ in \mathbb{S}^5 is $\Sigma \times \mathbb{B}^2 \times \mathbb{B}^1$.

 Σ bounds a properly immersed 3-disk $D \subset B$ that can be made embedded. Pairs of double points in D of opposite sign may be cancelled using the Whitney trick. The number of double points of either sign may be increased by adding kinks into Σ .

The trivialization of the normal bundle of D may be chosen compatibly with the splitting of the normal bundle of Σ – this yields an embedded 5-dimensional 3-handle $D \times \mathbb{B}^2 \subset B$ which may be used to surger F_d along Σ . This surgery kills Σ along with its dual and preserves tautness.

Ambient surgery

To perform the above surgery procedue on two (or more) spheres Σ_1, Σ_2 their linking number in \mathbb{S}^5 has to be trivial – that guarantees that the corresponding disks $D_1, D_2 \subset B$ have trivial intersection number so can be made geometrically disjoint using the Whitney trick.

It follows from the structure of the Seifert form on \widehat{G} that this group contains a half-dimensional subgroup with this property. For the stabilization classes this property holds by construction.