Oaxaca, Sept. 2017

The Inverse Function Theorems of Lawrence M. Graves

Asen L. Dontchev

Mathematical Reviews (AMS) and the University of Michigan
Supported by NSF Grant 156229

The last message from Jon

Jon Borwein jon.borwein@gmail.com via umich.edu 6/24/16
to Asen,
Hi , here is a question I need your help with.
Let T be tangent to ellipse E at f, show that for p in as neighbourhood of f,

$$
\left\|P_{E}(p)-P_{T}(p)\right\|=o(\|p-f\|) .
$$

That is; P_{T} is the linearisation of P_{E} at f and

$$
\left\|P_{E}(p)-P_{T}(p)\right\| /\|p-f\| \rightarrow 0, \quad \text { as } p \rightarrow f
$$

Since projection onto a line L is linear this will let us show that the D-R operator

The theorems

- The Hildebrand-Graves theorem (1927)
- The (Lyusternik-) Graves theorem (1950)
- The Bartle-Graves theorem (1952)

Lawrence Murry Graves (1896-1973)

Hildebrand-Graves inverse function theorem (1927)

Lipschitz modulus

$$
\operatorname{lip}(f ; \bar{x}):=\limsup _{\substack{x^{\prime}, x \rightarrow \bar{x}, x \neq x^{\prime}}} \frac{\left\|f\left(x^{\prime}\right)-f(x)\right\|}{\left\|x^{\prime}-x\right\|}
$$

Theorem (Hildebrand-Graves, TAMS 29: 127-153).

Let X be a Banach space and consider a function $f: X \rightarrow X$ and a linear bounded mapping $A: X \rightarrow X$ which is invertible. Suppose that

$$
\operatorname{lip}(f-A ; \bar{x}) \cdot\left\|A^{-1}\right\|<1
$$

Then f is strongly regular at \bar{x} for $f(\bar{x})$.

Strong regularity: A mapping $F: X \rightrightarrows X$ is said to be strongly regular at \bar{x} for \bar{y} when $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ and F^{-1} has a single-valued localization around \bar{y} for \bar{x} which is Lipschitz continuous.

The H-G IFT implies the classical (Dini) IFT

f is strictly differentiable at $\bar{x} \Longleftrightarrow \operatorname{lip}(f-\operatorname{Df}(\bar{x}) ; \bar{x})=0$.

The classical (Dini) IFT

Let $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ be strictly differentiable at \bar{x}. Then f is strongly regular at \bar{x} if and only if the derivative $\operatorname{Df}(\bar{x})$ is nonsingular.

Clarke's IFT (1976)

Clarke's generalized Jacobian $\partial f(x)$

Theorem (F. Clarke, Pac. J. Math. 64:97-102).

Consider a function $f: R^{n} \rightarrow R^{n}$ which is Lipschitz continuous around \bar{x} and suppose that all matrices in $\partial f(\bar{x})$ are nonsingular. Then f is strongly regular at \bar{x}.

Robinson's inverse function theorem (1980)

Theorem (S. M. Robinson, MOR 5:43-62).

Let X be a Banach spaces and consider a function $f: X \rightarrow X$ which is strictly differentiable at \bar{X} and any set-valued mapping $F: X \rightrightarrows X$. Let $\bar{y} \in f(\bar{x})+F(\bar{x})$. Then $f+F$ is strongly regular at \bar{X} for \bar{y} if and only if the mapping

$$
y \mapsto(f(\bar{x})+D f(\bar{x})(\cdot-\bar{x})+F(\cdot))^{-1}(y)
$$

has the same property.

Izmailov IFT (2014) = Clarke + Robinson

Theorem (A. Izmailov, MP (A) 147:581-590).

Let $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ be Lipschitz continuous around \bar{x}, let $F: \boldsymbol{R}^{n} \rightrightarrows \boldsymbol{R}^{n}$, and let $\bar{y} \in f(\bar{x})+F(\bar{x})$. Suppose that for every $A \in \partial f(\bar{x})$ the mapping $f(\bar{x})+A(\cdot-\bar{x})+F(\cdot))$ is strongly regular at \bar{x} for \bar{y}. Then $(f+F)$ has the same property.

Proof and extension to Banach spaces: AD and R. Cibulka, MP (A) 156: 257-270, 2016.

Lyusternik-Graves theorem (1934-1950)

Theorem.

Let X, Y be Banach spaces and onsider a function $f: X \rightarrow Y$ and a point $\bar{X} \in \operatorname{int} \operatorname{dom} f$ along with a bounded linear mapping $A: X \rightarrow Y$ which is surjective, such that

$$
\operatorname{lip}(f-A ; \bar{x}) \cdot\left\|A^{-1}\right\|^{-}<1
$$

where the inner "norm" of A is defined as

$$
\left\|A^{-1}\right\|^{-}:=\sup _{\|y\| \leq 1} \inf _{x \in A^{-1}(y)}\|x\| .
$$

Then f is metrically regular at \bar{x} for $f(\bar{x})$.

Metric Regularity

A mapping $F: X \rightrightarrows Y$ is said to be metrically regular at \bar{x} for \bar{y} when $\bar{y} \in F(\bar{x})$, gph F is locally closed at (\bar{x}, \bar{y}) and there is a constant $\tau \geq 0$ together with neighborhoods U of \bar{x} and V of \bar{y} such that

$$
d\left(x, F^{-1}(y)\right) \leq \tau d(y, F(x)) \quad \text { for every } \quad(x, y) \in U \times V
$$

The infimum of all constants $\tau \geq 0$ for which this inequality holds is the regularity modulus of F at \bar{x} for \bar{y} denoted by $\operatorname{reg}(F ; \bar{x} \mid \bar{y})$.

Euivalent to the Aubin property of the inverse:

$$
F^{-1}(x) \cap V \subset F^{-1}\left(x^{\prime}\right)+\tau \rho\left(x, x^{\prime}\right) \boldsymbol{B}
$$

Extended

(Lyusternik)-Graves theorem

Theorem.

Let X be a complete metric space, Y be a linear metric space with shift-invariant metric. Consider a mapping $F: X \rightrightarrows Y$ and a function $f: X \rightarrow Y$ such that there exist nonnegative scalars κ and μ with

$$
\kappa \mu<1, \quad \operatorname{reg}(F ; \bar{x} \mid \bar{y}) \leq \kappa \quad \text { and } \quad \operatorname{lip}(f ; \bar{x}) \leq \mu
$$

Then $f+F$ is [strongly] metrically regular at \bar{x} for $\bar{y}+g(\bar{x})$ with

$$
\operatorname{reg}(g+F ; \bar{x} \mid \bar{y}) \leq\left(\kappa^{-1}-\mu\right)^{-1}
$$

Open problem. Is there a Lyustenik-Graves theorem in nonlinear metric spaces?

Nonsmooth L-G theorems

Theorem (Pourciau, JOTA 22,311-351, 1977).
Let $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ be Lipschitz continuous around \bar{x}, and every $A \in \partial f(\bar{x})$ is surjective. Then f is metrically regular at \bar{x} for $f(\bar{x})$.

Extension to mapping of the form $f+F$ acting in Banach spaces:
R. Cibulka, AD and V. Veliov, (SICON 54: 3273-3296, 2016)

Bartle-Graves theorem (1952)

Bartle-Graves theorem (TAMS 72:400-413).

Let X and Y be Banach spaces and let $f: X \rightarrow Y$ be a function which is strictly differentiable at \bar{x} and such that the derivative $\operatorname{Df}(\bar{x})$ is surjective. Then there is a neighborhood V of $f(\bar{x})$ along with a constant $\gamma>0$ such that f^{-1} has a continuous selection s on V with the property

$$
\|s(y)-\bar{x}\| \leq \gamma\|y-f(\bar{x})\| \text { for every } y \in V
$$

Extended Bartle-Graves theorem

Theorem (AD, JCA 11:81-94, 2004).

Consider a mapping $F: X \rightrightarrows Y$ and any $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ and suppose that for some $c>0$ the mapping
$B_{c}(\bar{y}) \ni y \mapsto F^{-1}(y) \cap B_{c}(\bar{x})$ is closed-convex-valued. Consider also a function $f: X \rightarrow Y$ with $\bar{x} \in \operatorname{int} \operatorname{dom} f$. Let κ and μ be nonnegative constants such that

$$
\kappa \mu<1, \quad \operatorname{reg}(F ; \bar{x} \mid \bar{y}) \leq \kappa \quad \text { and } \quad \operatorname{lip}(f ; \bar{x}) \leq \mu
$$

Then for every $\gamma>\kappa /(1-\kappa \mu)$ the mapping $(f+F)^{-1}$ has a continuous local selection s around $f(\bar{x})+\bar{y}$ for \bar{x} with the property

$$
\|s(y)-\bar{x}\| \leq \gamma\|y-\bar{y}\| \text { for every } y \in V
$$

A nonsmooth Bartle-Graves theorem ?

Conjecture.

Consider a function $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ which is Lipschitz continuous around \bar{x} and a convex and closed set $C \subset R^{n}$ and suppose that for all matrices A in $\partial f(\bar{x})$ the mapping

$$
x \mapsto f(\bar{x})+A(x-\bar{x})+C
$$

is metrically regular at \bar{x} for \bar{y}. Then $(f+C)^{-1}$ has a continuous local selection around \bar{y} for \bar{x} which is calm at \bar{y}.

Newton Method for Variational Inequalities

Variational inequality (VI): find $x \in C$ such that

$$
f(x)+N_{C}(x) \ni 0,
$$

where $N_{C}(x)$ the normal cone to C at x :

$$
N_{C}(x)=\{w \mid\langle w, y-x\rangle \leq 0 \text { for all } y \in C\}
$$

Newton's method for VI : at each step solve a linear VI :

$$
f\left(x_{k}\right)+D f\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)+N_{C}\left(x_{k+1}\right) \ni 0
$$

Josephy (1979): If $f+N_{C}$ is strongly regular at \bar{x} for 0 then Then there exists a neighborhood O of \bar{x} such that for every $x_{0} \in O$ the method generates a unique in O sequence and this sequence is superlinearly convergent to \bar{x}.

Strong Regularity for Newton's Method

Newton method for a parameterized VI

$$
x_{0}=a, \quad f\left(x_{k}\right)+D f\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)+N_{C}\left(x_{k+1}\right) \ni p
$$

Consider the mapping

$$
\begin{gathered}
\boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \ni(a, p) \mapsto \equiv(a, p)=\left\{\left\{x_{k}\right\} \in l_{\infty}\left(\boldsymbol{R}^{n}\right) \mid x_{0}=a,\right. \\
\left.f\left(x_{k}\right)+D f\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)+N_{C}\left(x_{k+1}\right) \ni p, \quad k=1,2, \ldots\right\}
\end{gathered}
$$

Theorem (with RTR (2010) and Aragon et al. (2011)).

Let $f(\bar{x})+N_{C}(\bar{x}) \ni 0$; then $\{\bar{x}\} \in \equiv(\bar{x}, 0)$. The mapping \equiv has a Lipschitz continuous single-valued localization around ($\bar{x}, 0$) for $\{\bar{x}\}$ each value of which is a superlinearly convergent sequence to a solution $x(p)$ of $f(x)+N_{C}(x) \ni p$ if and only if $f+N_{C}$ is strongly regular at \bar{x} for 0 .

Open problem

Conjecture.

Let f be Lipschitz continuous around \bar{x} for 0 and for each $A \in \partial f(\bar{x})$ the mapping

$$
x \mapsto f(\bar{x})+A(x-\bar{x})+N_{C}(x)
$$

is strongly regular at \bar{x} for 0 . Then the mapping $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \ni(a, p) \mapsto$ the set of all sequence $\left\{x_{k}\right\} \in I_{\infty}\left(\boldsymbol{R}^{n}\right)$ such that $x_{0}=a$, and

$$
f\left(x_{k}\right)+A\left(x_{k+1}-x_{k}\right)+N_{C}\left(x_{k+1}\right) \ni p
$$

for some $A \in \partial f\left(x_{k}\right) \quad k=1,2, \ldots$, has a Lipschitz continuous single-valued localization around ($\bar{x}, 0$) for $\{\bar{x}\}$ each value of which is a superlinearly convergent sequence to a solution $x(p)$ of $f(x)+N_{C}(x) \ni p$.

Muchas Gracias!

