Oaxaca, Sept. 2017

The Inverse Function Theorems of Lawrence M. Graves

Asen L. Dontchev

Mathematical Reviews (AMS) and the University of Michigan

Supported by NSF Grant 156229

Jon Borwein jon.borwein@gmail.com via umich.edu 6/24/16 to Asen,

Hi, here is a question I need your help with.

Let T be tangent to ellipse E at f, show that for p in as neighbourhood of f,

$$||P_E(p) - P_T(p)|| = o(||p - f||).$$

That is; P_T is the linearisation of P_E at f and

$$||P_E(p) - P_T(p)||/||p - f|| \rightarrow 0$$
, as $p \rightarrow f$.

Since projection onto a line L is linear this will let us show that the D-R operator

The theorems

- The Hildebrand-Graves theorem (1927)
- The (Lyusternik-) Graves theorem (1950)
- The Bartle-Graves theorem (1952)

Lawrence Murry Graves (1896–1973)

Hildebrand–Graves inverse function theorem (1927)

Lipschitz modulus

$$\operatorname{lip}(f;\bar{x}) := \limsup_{x',x\to\bar{x},\atop x\neq x'} \frac{\|f(x')-f(x)\|}{\|x'-x\|}.$$

Theorem (Hildebrand–Graves, TAMS 29: 127–153).

Let X be a Banach space and consider a function $f : X \to X$ and a linear bounded mapping $A : X \to X$ which is invertible. Suppose that

$$\lim(f - A; \bar{x}) \cdot \|A^{-1}\| < 1.$$

Then f is strongly regular at \bar{x} for $f(\bar{x})$.

Strong regularity: A mapping $F : X \Rightarrow X$ is said to be strongly regular at \bar{x} for \bar{y} when $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ and F^{-1} has a single-valued localization around \bar{y} for \bar{x} which is Lipschitz continuous. f is strictly differentiable at $\bar{x} \iff \lim(f - Df(\bar{x}); \bar{x}) = 0.$

The classical (Dini) IFT

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be strictly differentiable at \bar{x} . Then f is strongly regular at \bar{x} if and only if the derivative $Df(\bar{x})$ is nonsingular.

Clarke's generalized Jacobian $\partial f(x)$

Theorem (F. Clarke, Pac. J. Math. 64:97–102).

Consider a function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is Lipschitz continuous around \bar{x} and suppose that all matrices in $\partial f(\bar{x})$ are nonsingular. Then f is strongly regular at \bar{x} .

Theorem (S. M. Robinson, MOR 5:43-62).

Let X be a Banach spaces and consider a function $f : X \to X$ which is strictly differentiable at \bar{x} and any set-valued mapping $F : X \rightrightarrows X$. Let $\bar{y} \in f(\bar{x}) + F(\bar{x})$. Then f + F is strongly regular at \bar{x} for \bar{y} if and only if the mapping

$$y \mapsto (f(\bar{x}) + Df(\bar{x})(\cdot - \bar{x}) + F(\cdot))^{-1}(y)$$

has the same property.

Theorem (A. Izmailov, MP (A) 147:581-590).

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be Lipschitz continuous around \bar{x} , let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, and let $\bar{y} \in f(\bar{x}) + F(\bar{x})$. Suppose that for every $A \in \partial f(\bar{x})$ the mapping $f(\bar{x}) + A(\cdot - \bar{x}) + F(\cdot)$ is strongly regular at \bar{x} for \bar{y} . Then (f + F) has the same property.

Proof and extension to Banach spaces: AD and R. Cibulka, MP (A) 156: 257–270, 2016.

Theorem.

Let X, Y be Banach spaces and onsider a function $f : X \to Y$ and a point $\bar{x} \in \operatorname{int} \operatorname{dom} f$ along with a bounded linear mapping $A : X \to Y$ which is surjective, such that

$$\lim(f - A; \bar{x}) \cdot \|A^{-1}\|^{-} < 1,$$

where the inner "norm" of A is defined as

$$||A^{-1}||^{-} := \sup_{||y|| \le 1} \inf_{x \in A^{-1}(y)} ||x||.$$

Then f is metrically regular at \bar{x} for $f(\bar{x})$.

A mapping $F : X \rightrightarrows Y$ is said to be metrically regular at \bar{x} for \bar{y} when $\bar{y} \in F(\bar{x})$, gph F is locally closed at (\bar{x}, \bar{y}) and there is a constant $\tau \ge 0$ together with neighborhoods U of \bar{x} and V of \bar{y} such that

$$d(x, F^{-1}(y)) \leq \tau d(y, F(x))$$
 for every $(x, y) \in U \times V$.

The infimum of all constants $\tau \ge 0$ for which this inequality holds is the regularity modulus of F at \bar{x} for \bar{y} denoted by reg $(F; \bar{x} | \bar{y})$.

Euivalent to the Aubin property of the inverse:

$$F^{-1}(x) \cap V \subset F^{-1}(x') + au
ho(x,x')B$$

Theorem.

Let X be a complete metric space, Y be a linear metric space with shift-invariant metric. Consider a mapping $F: X \rightrightarrows Y$ and a function $f: X \rightarrow Y$ such that there exist nonnegative scalars κ and μ with

$$\kappa \mu < 1$$
, $\operatorname{reg}(F; \bar{x} | \bar{y}) \le \kappa$ and $\operatorname{lip}(f; \bar{x}) \le \mu$.

Then f + F is [strongly] metrically regular at \bar{x} for $\bar{y} + g(\bar{x})$ with

$$\operatorname{reg}(g+F;\bar{x}|\bar{y}) \leq (\kappa^{-1}-\mu)^{-1}.$$

Open problem. Is there a Lyustenik-Graves theorem in nonlinear metric spaces?

Theorem (Pourciau, JOTA 22,311–<u>351, 1977).</u>

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz continuous around \bar{x} , and every $A \in \partial f(\bar{x})$ is surjective. Then f is metrically regular at \bar{x} for $f(\bar{x})$.

Extension to mapping of the form f + F acting in Banach spaces: R. Cibulka, AD and V. Veliov, (SICON 54: 3273–3296, 2016)

Bartle-Graves theorem (TAMS 72:400-413).

Let X and Y be Banach spaces and let $f : X \to Y$ be a function which is strictly differentiable at \bar{x} and such that the derivative $Df(\bar{x})$ is surjective. Then there is a neighborhood V of $f(\bar{x})$ along with a constant $\gamma > 0$ such that f^{-1} has a continuous selection s on V with the property

$$\|s(y) - \bar{x}\| \leq \gamma \|y - f(\bar{x})\|$$
 for every $y \in V$.

Theorem (AD, JCA 11:81–94, 2004).

Consider a mapping $F : X \Rightarrow Y$ and any $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ and suppose that for some c > 0 the mapping $B_c(\bar{y}) \ni y \mapsto F^{-1}(y) \cap B_c(\bar{x})$ is closed-convex-valued. Consider also a function $f : X \to Y$ with $\bar{x} \in \operatorname{int} \operatorname{dom} f$. Let κ and μ be nonnegative constants such that

$$\kappa \mu < 1$$
, $\operatorname{reg}(F; \overline{x} | \overline{y}) \leq \kappa$ and $\operatorname{lip}(f; \overline{x}) \leq \mu$.

Then for every $\gamma > \kappa/(1 - \kappa \mu)$ the mapping $(f + F)^{-1}$ has a continuous local selection s around $f(\bar{x}) + \bar{y}$ for \bar{x} with the property

$$\|s(y) - \bar{x}\| \le \gamma \|y - \bar{y}\|$$
 for every $y \in V$.

Conjecture.

Consider a function $f : \mathbb{R}^n \to \mathbb{R}^m$ which is Lipschitz continuous around \bar{x} and a convex and closed set $C \subset \mathbb{R}^n$ and suppose that for all matrices A in $\partial f(\bar{x})$ the mapping

$$x\mapsto f(\bar{x})+A(x-\bar{x})+C$$

is metrically regular at \bar{x} for \bar{y} . Then $(f + C)^{-1}$ has a continuous local selection around \bar{y} for \bar{x} which is calm at \bar{y} .

Variational inequality (VI): find $x \in C$ such that

 $f(x)+N_C(x)\ni 0,$

where $N_C(x)$ the normal cone to C at x:

$$N_C(x) = \{w \mid \langle w, y - x \rangle \leq 0 \text{ for all } y \in C\}$$

Newton's method for VI: at each step solve a linear VI:

$$f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni 0$$

Josephy (1979): If $f + N_C$ is strongly regular at \bar{x} for 0 then Then there exists a neighborhood O of \bar{x} such that for every $x_0 \in O$ the method generates a unique in O sequence and this sequence is superlinearly convergent to \bar{x} .

Strong Regularity for Newton's Method

Newton method for a parameterized VI

$$x_0 = a$$
, $f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p$

Consider the mapping

$$\mathbf{R}^n \times \mathbf{R}^n \ni (\mathbf{a}, \mathbf{p}) \mapsto \Xi(\mathbf{a}, \mathbf{p}) = \left\{ \{x_k\} \in I_\infty(\mathbf{R}^n) \mid x_0 = \mathbf{a}, \\ f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni \mathbf{p}, \quad k = 1, 2, \dots \right\}$$

Theorem (with RTR (2010) and Aragon et al. (2011)).

Let $f(\bar{x}) + N_C(\bar{x}) \ni 0$; then $\{\bar{x}\} \in \Xi(\bar{x}, 0)$. The mapping Ξ has a Lipschitz continuous single-valued localization around $(\bar{x}, 0)$ for $\{\bar{x}\}$ each value of which is a superlinearly convergent sequence to a solution x(p) of $f(x) + N_C(x) \ni p$ if and only if $f + N_C$ is strongly regular at \bar{x} for 0.

Open problem

Conjecture.

Let f be Lipschitz continuous around \bar{x} for 0 and for each $A \in \partial f(\bar{x})$ the mapping

$$x \mapsto f(\bar{x}) + A(x - \bar{x}) + N_C(x)$$

is strongly regular at \bar{x} for 0. Then the mapping $\mathbb{R}^n \times \mathbb{R}^n \ni (a, p) \mapsto$ the set of all sequence $\{x_k\} \in I_{\infty}(\mathbb{R}^n)$ such that $x_0 = a$, and

$$f(x_k) + A(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p$$

for some $A \in \partial f(x_k)$ k = 1, 2, ..., has a Lipschitz continuous single-valued localization around $(\bar{x}, 0)$ for $\{\bar{x}\}$ each value of which is a superlinearly convergent sequence to a solution x(p) of $f(x) + N_C(x) \ni p$.

Muchas Gracias!