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Definitions

Let H be a Hilbert space

The projection onto a nonempty closed subset C is given by

PC (x) :=

{
z ∈ C : ‖x − z‖ = inf

z ′∈C
‖x − z ′‖

}
.

When C is convex the projection operator PC is single valued.

The reflection mapping RC is defined by

RC := 2PC − I ,

where I is the identity.
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Construction

Definition

Given two closed sets A and B, and an initial point x0 ∈ H, the
Douglas-Rachford method generates a sequence (xn)∞n=1 as follows:

xn+1 ∈ TA,B(xn) where TA,B :=
1

2
(I + RBRA) . (1)

When the two sets A and B are clear from the context we will
simply write T instead of TA,B .

The process may be concisely described as “reflect across A,
reflect across B, average with start.”
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“Sometimes it is easier to see than to say.” — Jon Borwein

Figure: One iterate of Douglas-Rachford Method TE ,L
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The Classical Result

Theorem (Lions-Mercier, 1979)

Suppose A,B ⊆ H are closed and convex with non-empty
intersection. Given x0 ∈ H the sequence defined by

xn+1 := TA,Bxn where TA,B :=
1

2
(I + RBRA)

converges weakly to an x ∈ FixTA,B with PAx ∈ A ∩ B.

(with original monotone sum of operators condition relaxed by
Bauschke, Luke, Combettes in [7])
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Circle and Line

Where the sets are the
2-sphere and a line,
global convergence
except on a singular
manifold (the subspace
orthogonal to the line)
was first hypothesized
by Borwein and Sims
[12] and later proven by
Benoist[9].

Figure: A Cinderella Script shows the Douglas
Rachford algorithm for the 2-sphere and line
along with the level sets for the Lyapunov
function from Benoist’s paper [9]. 7 / 55
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Generalizing from the Circle

The 2-sphere is a specific case of two more general kinds of sets,
namely:

Ellipses satisfying

E := {(u, v) ∈ R2|
(u
a

)2
+
(v
b

)2
= R2} for fixed a, b,R. (2)

p-Spheres satisfying

S := {(u, v) ∈ R2| (u)p + (v)p = R2} for fixed R. (3)
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Experimental Discovery

Projection onto the 2-sphere is simple; for any x :
(PS(x) = x/||x ||).

Projection for ellipses and p-spheres, by contrast, is not
simple.

We built customized numerical solvers and used Cinderella to
explore the behavior dynamically

Because the projections are far more complicated, a Lyapunov
proof similar to that for the 2-sphere seemed unlikely

Study with Cinderella revealed — and we subsequently proved
— that convergence holds only locally; the singular set
becomes more complicated.

In the absence of an explicit proof, we turned to
parallelization to better study convergence
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Dynamic Discoveries!

Figure: Period 3 points and corresponding basins of attraction for an
ellipse and line.
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p-Spheres

Figure: Left: for the 1/2-sphere, a singular manifold of period 2 points
appears with basins of attraction (or “periodic attraction” rather). Right:
for the 1/3-sphere, a pair of period 2 points appears with basins of
attraction.
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Ellipses

The situation becomes even more interesting in the case of
the Ellipse.

As the Ellipse is stretched (as b grows), periodic points begin
to appear.

Points of greater period seem to appear with more stretching
of the Ellipse.

We chose to examine in detail the ellipse b = 8 and line
through the origin of slope 6.
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b = 8 Ellipse, y = 6x Line

Figure: Points of periodicity appear with basins of attraction.
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Basins

Figure: One spiral is shown from each of the sets of periodic points
except for the period 2 points (which are already easily visible in the
previous slide). The colors are exactly as they were in the previous slide.
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Attractive and Repelling Basins

Figure: Far Left: for the b = 2 ellipse, the line y = 2x yields period two
points which are unstable. Center Left: we connect every second iterate.
Center Right: a tiny perturbation of the starting point determines which
feasible point iterates go to. Far Right: rotating the line, periodic points
also rotate and become stable.
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Figure: We connect Every second iterate for the b = 2 ellipse with 300
iterates. We start at upper left with the line y = 2x and rotate it further
in each frame until we have the line y = 3

2x at bottom right. Part of the
line is visible in the bottom right corner of each frame. As we rotate the
line, we see the speed at which iterates escape from the source basin
decreases until eventually the source basin turns into a sink basin.
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The Role of Parallelization

To visualize the regions of convergence, we attempted to
create potential Lyapunov curves numerically.

This requires numerical inversion of Douglas Rachford.

We first attempted this for the 2-sphere whose explicit
Lyapunov function is known

Even for the 2-sphere, the induced functions behave poorly and
Maple’s built-in root-finders struggled.
For any ellipse with b 6= 1, numerical inversion is even more
unreliable.

This led us to use parallelization
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Figure: The b = 8 ellipse and y = 6x line with both Cinderella plot and
plot of the basins.
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Figure: Zoomed in on the basins.
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Figure: Zoomed out to see the regions around the ellipse.
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MoCaO Poster Image Version

Figure: Coloring based on indigenous Australian art.
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Numerical Accuracy

In our follow-up paper, “Computing
Intersections of Implicitly Specified
Plane Curves,” [22] we explored
Douglas-Rachford with Euclidean
reflection replaced by Schwarzian
Reflection.

We also created a new projection by
computing the intersection of the
curve with the line through the point
and its Schwarzian reflection.

Observed deviation of this new
method from Euclidean reflection
computed by solving Lagrangian
system was negligible.

Figure: Schwarzian Reflection
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Lessons about Convergence and Behavior

We compare observations about ellipses to experimental results
using Douglas-Rachford by Aragón, Borwein, and Tam.

Figure: Solving sudoku puzzles [2].
Image source Wikimedia Commons [25]

Figure: Solving incomplete euclidean
distance matrices for protein
mapping [3] [14], see also Borwein
and Bailey [5].
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Convergence: Sudoku 1
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Figure: Left: distance to the solution by iterations of Douglas Rachford
for a sudoku puzzle. Right: for the b = 2 ellipse with line y = 2x with
210 iterates, distance from each iterate to the particular feasible point
the sequence converges to.
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Figure: The same iterates from the right side are shown. By connecting
every second iterate and color-coding, we see subsequences in the two
different source basins.
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Convergence: Sudoku 2
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Figure: Left: distance to the solution by iterations of Douglas Rachford
for a sudoku puzzle. Right: 150 iterates for the b = 14 ellipse and line
y = 9x . The iterates approach the ellipse before being pulled into the
attractive basins for period 11 points.
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Matrix Completion: EDMs

Figure: Left: relative error by iterations (Vertical axis logarithmic) for the
Euclidean distance matrices for five proteins. Center: for the b = 8 ellipse
and line y = 6x , relative error by iterations (vertical axis logarithmic) for
the 300 iterates which are pictured in Figure 20. Right: distance to the
actual feasible point for the same 300 iterates.
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When Convergence is Slow: Ellipse

Figure: For the b = 8 ellipse and the line y = 6x , convergent sequences
of iterates started among the basins of periodicity appear to trace out the
shape of the basins on their way to the feasible point.
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A Result on Infeasibility

Theorem

In a Euclidean Space X , let A,B be
sets. Further suppose one of the
following:

1 A is compact and co(A) and
cl(co(B)) are disjoint.

2 B is compact and cl(co(A)) and
co(B) are disjoint.

Then, where x0 is the starting point
and {xn}∞n=1 are the iterates for
Douglas Rachford TA,B , we have
that ||xn|| tends linearly to ∞ with a
step size of at least d(A,B).

Figure: Divergence Theorem is
illustrated
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A Result on Infeasibility

Corollary

The image also
illustrates a corollary.
Using a result from
Bauschke and Moursi
[8], the purple shadow
sequence converges to
the point on the ellipse
which is nearest the line.
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Extension to Many Sets

We can apply this method to a feasibility problem with N sets
Ω1 . . .ΩN to find x ∈ ∩Nk=1Ωk .

We do so by working in the product space XN as follows:

A := Ω1 × · · · × ΩN

B := {x = (x1, . . . , xN)|x1 = x2 = · · · = xN}
We call this the “divide and concur” method.

A is “divide” step of pointwise projection onto the individual
sets from the feasibility problem.
B is “concur” step of projection onto the set of agreement.
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Boundary Valued ODEs

Consider the problem

y ′′ = f (y ′, y , t) for a ≤ t ≤ b with y(a) = α, y(b) = β

Using the finite differences method, we can reformulate a
numerical ODE problem as a feasibility problem.

Let t1 . . . tN be interior mesh points, so we are computing
with N + 1 segments [a, t1], [t1, t2], . . . , [tN , b] of length h.

By an appropriate centered difference formula,

y(ti+1)− 2y(ti ) + y(ti−1)

h2
= f

(
ti , y(ti ),

y(ti+1)− y(ti−1)

2h
−

h2

6
y ′′′(η)

)
+
h2

12
y4(ζi )

For some ζi , ηi ∈ (ti−1, ti+1).
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Reformulation as a Feasibility Problem

We seek a numerical solution ω = (ω0, . . . , ωN+1) such that
y(a) = α = ω0, y(t1) = ω1, . . . , y(b) = β = ωN+1.
From formula on previous slide, we obtain a nonlinear system:

−α+ 2ω1 − ω2 + h2f

(
t1, ω1,

ω2 − α
2h

)
=0 Eqn(1)

−ω1 + 2ω2 − ω3 + h2f

(
t2, ω2,

ω3 − ω1

2h

)
=0 Eqn(2)

...

−ωN−2 + 2ωN−1 − ωN + h2f

(
tN−1, ωN−1,

ωN − ωN−2

2h

)
=0 Eqn(N− 1)

−ωN−1 + 2ωN − β + h2f

(
tN , ωN ,

β − ωN−1

2h

)
=0 Eqn(N)

Let Ωi = {ω = (ω1, . . . , ωN)|ω satisfies the ith equation}.
Finding ω ∈ ∩Nk=1Ωk numerically solves the ODE.
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Product Space Projections

PA(x) updates all colored values.

PΩ1(x1) PΩ2(x2) PΩ3(x3) PΩ4(x4) PΩ5(x5) PΩ6(x6)

x11 x21 x31 x41 x51 x61

x12 x22 x32 x42 x52 x62

x13 x23 x33 x43 x53 x63

x14 x24 x34 x44 x54 x64

x15 x25 x35 x45 x55 x65

x16 x26 x36 x46 x56 x66

PB(x) averages across rows, updates all values.
1
6

∑6
j=1 xj1 x11 x21 x31 x41 x51 x61

1
6

∑6
j=1 xj2 x12 x22 x32 x42 x52 x62

1
6

∑6
j=1 xj3 x13 x23 x33 x43 x53 x63

1
6

∑6
j=1 xj4 x14 x24 x34 x44 x54 x64

1
6

∑6
j=1 xj5 x15 x25 x35 x45 x55 x65

1
6

∑6
j=1 xj6 x16 x26 x36 x46 x56 x66
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Alternative Scheme I: Stacking (Intersections)

PA(x) updates all colored values.

PΩ1∩Ω4(x1) PΩ2∩Ω5(x2) PΩ3∩Ω6(x3)

x11 x21 x31

x12 x22 x32

x13 x23 x33

x14 x24 x34

x15 x25 x35

x16 x26 x36

PB(x) averages across rows, updates all values.
1
3

∑3
j=1 xj1 x11 x21 x31

1
3

∑3
j=1 xj2 x12 x22 x32

1
3

∑3
j=1 xj3 x13 x23 x33

1
3

∑3
j=1 xj4 x14 x24 x34

1
3

∑3
j=1 xj5 x15 x25 x35

1
3

∑3
j=1 xj6 x16 x26 x36
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Alternative Scheme II

PA(x) updates all colored values.

PΩ1(x1) PΩ2(x2) PΩ3(x3) PΩ4(x4) PΩ5(x5) PΩ6(x6)

x11 x21 x31 x41 x51 x61

x12 x22 x32 x42 x52 x62

x13 x23 x33 x43 x53 x63

x14 x24 x34 x44 x54 x64

x15 x25 x35 x45 x55 x65

x16 x26 x36 x46 x56 x66

PB(x) averages across only updated values in rows, updates all.
1
2

∑2
j=1 xj1 x11 x21 x31 x41 x51 x61

1
3

∑3
j=1 xj2 x12 x22 x32 x42 x52 x62

1
3

∑4
j=2 xj3 x13 x23 x33 x43 x53 x63

1
3

∑5
j=3 xj4 x14 x24 x34 x44 x54 x64

1
3

∑6
j=4 xj5 x15 x25 x35 x45 x55 x65

1
2

∑6
j=5 xj6 x16 x26 x36 x46 x56 x66 36 / 55
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Examples

Unless otherwise specified:

x0 = (ω, . . . , ω) ∈ RN×N where ωi = α + i(β−α)
N+1 , i = 1, . . . ,N

matches the affine function satisfying the boundary values.

N = 21

We compute the error via the L2 norm:

ε :=
b − a

N + 1

N∑
k=1

|ω′k − ωk |2.

When ω′k is the value of the true solution at xk = a + k(b−a)
N+1

and ωk represents the solution of the finite difference problem
at xk calculated using Newton’s method, ε measures the error
between the true solution and the approximate solution.
We expect this error to decrease as N is increased.
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Example: y ′′ = 1
8
(32 + 2x3 − yy ′)

(a) True and approximate solutions (b) Error for DR iterates

Figure: Convergence behavior for a polynomial Example.
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Example: y ′′ = 1
8
(32 + 2x3 − yy ′)

(a) DR (b) AP

Figure: Convergence behavior for a polynomial example.
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Examples: (y ′′ = −|y |) and (y ′′ = 0 if x < 0 and y otherwise)

Figure: True solutions (left axis scale) and effect of partition size on error
between true solution and estimate by Newton (right axis scale) for
Examples ?? (left) and ?? (right).
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Example: y ′′ = 0 if x < 0 and y otherwise

Figure: Effect of N on DR convergence: N=11 (left), N=21 (right)

41 / 55



Preliminaries on Douglas Rachford
Dynamic Exploration

Tools for Visualization
Convergence Results

Boundary Valued ODEs

Reformulation as a Feasibility Problem
Speeding Up Convergence
Examples
Conclusion

Figure: Relative error and error from true solution for converging DR
iterates for an ellipse and line.

Behavior is consistent with other contexts
Here the line is the analog of our diagonal set B (??), and so
at right we report ‖PLxn+1 − PLxn‖2

The similarities to Figure 23 are unmistakable. 42 / 55
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Figure: DR and AP may converge to two different solutions from the
same starting point: at left an absolute value problem, at right an
exponential problem.
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Example y ′′ = −|y |

Method/Start λ .01 .1 .5 1 2 3 4 5 6 7 8 9

Newton N=11 2 2 2 2 2 2 2 2 2 2 2 2
DR N=11 1 1 2 2 2 2 1 1 1 1 1 1
AP N=11 1 1 2 2 2 2 2 2 2 2 2 2

Newton N=21 2 2 2 2 2 2 2 2 2 2 2 2
DR N=21 1 1 2 2 2 S S S S 2 2 2
AP N=21 1 1 2 2 2 2 2 2 2 2 2 2

Method/Start λ -.01 -.1 -.5 -1 -2 -3 -4 -5 -6 -7 -8 -9

Newton N=11 1 1 1 1 1 1 1 1 1 1 1 1
DR N=11 1 1 1 1 1 1 1 1 1 1 1 1
AP N=11 1 1 1 1 1 1 1 1 1 1 1 1

Newton N=21 1 1 1 1 1 1 1 1 1 1 1 1
DR N=21 1 1 1 1 1 S S S S 2 2 2
AP N=21 1 1 1 1 1 1 1 1 1 1 1 1

Table: Sensitivity to starting point for an absolute value problem: 1 or 2
indicate the method converged to y1 or y2 while S indicates the method
appeared stuck after 5E5 iterates. Column headers of λ indicate functions
which matched the boundary values and were λχ(0,4) everywhere else.
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Example: y ′′ = −|y |

Figure: Left: DR started sufficiently far from two feasible points may
converge to the farther of the two while AP converges to the nearer.
Right: for Example ?? after 5E5 iterates DR appears stuck for some
starting points.
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Figure: Left: stuck DR. Right: relative error tends toward a pattern other
than smooth oscillation.
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Example: y ′′ = −|y |

Method / Start λ -1 0 1 2 3 4 5 6 7

Newton N=11 1 1 1 1 2 D D D D
DR N=11 1 1 1 2 2 2 2 2 2
AP N=11 1 1 1 1 2 2 2 S S

Newton N=21 1 1 1 1 2 D D D D
DR N=21 1 1 1 2 2 2 2 2 2
AP N=21 1 1 1 1 2 2 2 2 S

Table: Sensitivity to starting point for Example ??: 1, 2 indicates the
method converged to y1, y2 respectively while “D” and “S” respectively
indicate the method diverged or appeared stuck. Column headers of λ
indicate functions which matched the boundary values and were λχ(0,1)

everywhere else.
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Example: Heaviside

Figure: Newton’s Method may cycle for certain starting points in a
Heaviside problem (left) while DR converges (right).
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Examples: Summary

DR AP DR DR AP True

1E−1 1E−1 wave Error
Relative

Error
Relative error

Ex ?? N=11 9E3 4E3 142 44 2E3 3.4E−3
N=21 129E3 60E3 516 155 26E3 6.7E−4

Ex ?? N=11 18E3 9E3 198 63 4E3 4.7E−4
N=21 247E3 102E3 715 227 53E3 1.3E−4

Ex ?? N=11 9E3 4E3 138 43 2E3 2.5E−4
N=21 117E3 58E3 500 155 25E3 5.1E−5

Ex ?? N=11 2E3 1E3 65 19 4E2 3.1E−3
N=21 25E3 12E3 230 67 5E3 6.2E−4

Ex ?? N=11 16E3 8E3 184 57 34E2 2.6E−5
N=21 208E3 104E3 670 211 46E3 5.1E−6

Ex ?? N=11 1E3 4E2 41 12 1E2 1.4E−3
N=21 11E3 5E3 149 46 2E3 2.9E−4

Table: A summary of experimental results from all examples.
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Lessons

The poor tradeoff in convergence rate for finer partitions
suggests some modifications to the method for solving real
world problems.

One such modification is to begin with a coarse partition and
increase the fineness over time.
Another is to simply switch to a more traditional solver once
sufficient proximity to the true solution is suspected from
analysis of the relative error.

The impressive stability of the Douglas-Rachford method
relative to more traditional methods is consistent with
previous findings in the application of these methods to
finding the intersections of analytic curves [?LSS]

This property and its unique suitability for parallelization
make it an ideal candidate for employment in settings where
traditional solvers fail.
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This work is dedicated to the memory of Jonathan Borwein: our
advisor, mentor, and friend.

Image drawn by Simon Roy at request of Jon and Veselin Jungic:

(http://jonborwein.org/2016/08/jon-borwein-a-friend-and-a-mentor/)
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Thanks for listening!
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