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Fundamental feasibility problem

Unless stated otherwise,

X : a real Hilbert space,

A,B : closed (possibly nonconvex) subsets of X .

The fundamental feasibility problem asks to

find x ∈ A ∩ B.

In the inconsistent case, i.e., A ∩ B = ∅, it can be naturally formulated as
finding a best approximation pair relative to A and B:

find (a, b) ∈ A× B such that ‖a− b‖ = inf ‖A− B‖.

I arises in a wide range of applications including image recovery and
encoding algorithms.

I is typically approached by projection methods which combine
projectors and their variants in a suitable way to generate a sequence
converging to a solution of the problem.
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Projectors and relaxed projectors

Let C be a nonempty closed set in X and λ ∈ R+. The projector onto C is

PC : X ⇒ C : x 7→ PCx := argminc∈C ‖x − c‖.
The relaxed projector for C with parameter λ is defined by

PλC := (1− λ) Id+λPC .
I P0

C = Id, P1
C = PC ,

I P2
C = RC := 2PC − Id (the reflector across C ).
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Douglas–Rachford (DR) algorithm

Use the DR operator

TA,B := 1
2(Id+RBRA)

to generate a DR sequence (zn)n∈N by

(∀n ∈ N) zn+1 ∈ TA,Bzn, where z0 ∈ X .

I TA,B is single-valued when A and B are convex.

I z ∈ FixTA,B :=
{
z ∈ X

∣∣ z ∈ TA,Bz
}
⇒ (∃a ∈ PAz) a ∈ A ∩ B.
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Reflect, reflect, average. . .

While (zn)n∈N “spirals” towards the origin, the “shadow sequence”
(PAzn)n∈N occasionally gets very close to the origin!
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Convex-convex case

Suppose that A and B are convex.

Fact (Lions–Mercier 1979, Svaiter 2011, Bauschke–Combettes–Luke 2004)

If A ∩ B 6= ∅, then zn ⇀ z ∈ FixT = (A ∩ B) + NA−B(0) and
PAzn ⇀ PAz ∈ A ∩ B; otherwise, ‖zn‖ → +∞.

Now assume that g := PB−A0 ∈ B − A, or equivalently,

E := A ∩ (B − g) 6= ∅ and F := (A + g) ∩ B 6= ∅.

Fact (Bauschke–Combettes–Luke 2004)

The sequence (PAzn)n∈N is bounded and its weak cluster points lie in E .

Here NA−B(0) is the normal cone of the set A− B =
{
a− b

∣∣ a ∈ A, b ∈ B
}
.
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Affine-convex case

Theorem (Bauschke–D–Moursi 2016, When A is a closed affine subspace)

1 PAzn ⇀ a ∈ E = A ∩ (B − g).

2 No general conclusion can be drawn about the sequence (PBzn)n∈N.

This is strengthened by Bauschke–Moursi 2017 for A convex.

Example (X = R2, A = R× {0},
B = epi(|·|+ 1))

For z0 ∈ [−1, 1]× {0}, zn = (0, n) ∈ B,
and ‖PBzn‖ = ‖zn‖ = n→∞.

Theorem (Bauschke–D–Moursi 2016, When B is a closed affine subspace)

1 PAzn ⇀ a ∈ E = A ∩ (B − g).

2 PBzn ⇀ b ∈ F = (A + g) ∩ B.
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Spingarn’s method

Consider the problem to find a least-squares solution of
⋂M

j=1 Cj , i.e., to

find minimizers of
M∑
j=1

d2
Cj
, (1)

where C1, . . . ,CM are nonempty closed convex (possibly nonintersecting)
subsets of X with corresponding distance functions dC1 , . . . , dCM

.

Set X := XM , A :=
{

(x , . . . , x) ∈ X
∣∣ x ∈ X

}
, and B := C1 × · · · × CM .

Assume that g = (g1, . . . , gM) := PB−A0 ∈ B− A. Then

E := A∩ (B−g) 6= ∅, and (x , . . . , x) ∈ A∩ (B−g) ⇔ x ∈
M⋂
j=1

(Cj −gj).

Corollary

Let (zn)n∈N be a DR sequence for (A,B). Then
PAzn ⇀ z = (z , . . . , z) ∈ A ∩ (B− g),

where z ∈
⋂M

j=1(Cj − gj) and z is a least-squares solution of (1).

This generalizes work by Spingarn (1987) who considered only halfspaces
and whose proof was much more complicated.
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Find a point in the generalized intersection

Three closed convex sets are shown along with their translations forming
the generalized intersection. The first few terms of (e(PAzn))n∈N (yellow
points) are also depicted. Here e : A→ R2 : (x , x , x) 7→ x .
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Presence of Slater’s condition (A ∩ intB 6= ∅)

From now on, X is finite-dimensional.

Lemma

If A and B are convex and 0 ∈ int(A− B), then zn → z ∈ A ∩ B; the
convergence is finite provided that z ∈ A ∩ intB.

Theorem (Bauschke–D–Noll–Phan 2016, Bauschke–D 2017)

Suppose that A∩ intB 6= ∅. Then the DR algorithm converges finitely to a
point in A ∩ B in each of the following cases:

1 A is an affine subspace and B is a polyhedron.

2 A ∈ {X × {0},X × R+,X × R−} and B = epi f , where
f : X → ]−∞,+∞] is convex, l.s.c., and proper.

3 A is a hyperplane/halfspace and B is a finite intersection of closed
balls Bj such that (∀x ∈ A ∩ bdryB)(∃!Bj) x ∈ bdryBj .

intC : the interior of C .

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 15
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Absence of Slater’s condition

I In the case of an affine subspace and a polyhedron, if the Slater’s
condition is replaced by “A∩ riB 6= ∅”, then finite convergence fails in
general, e.g., the case of two lines in R2.

I If A ∈ {X × {0},X × R−} and B = epi f , where infX f ≥ 0 and f is
differentiable at its minimizers, then (PAzn)n∈N and hence (zn)n∈N do
not converge finitely whenever z0 = (x0, ρ0) ∈ B with x0 /∈ argmin f .

Theorem (Bauschke–D 2017)

Suppose that A is a hyperplane/halfspace and that A ∩ B 6= ∅. Then the
DR sequence converges finitely to a point in z ∈ FixTA,B with
PAz ∈ A ∩ B in each of the following cases:

1 B is a halfspace of X .

2 X = R2, and B is a polyhedral set.

riC : the interior of C relative to the affine hull of C .

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 16
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When one set is finite

Suppose that B is a finite subset of X and let (zn)n∈N be a DR sequence
for (A,B).

Theorem (Bauschke–D 2017)

If A is an affine subspace/a halfspace, A ∩ B 6= ∅, and the sequence
(zn)n∈N is asymptotically regular, i.e., zn − zn+1 → 0, then (zn)n∈N
converges in finitely many steps to a point z ∈ FixTA,B with PAz ∈ A ∩ B.

Theorem (Bauschke–D 2017)

If A is a hyperplane/halfspace and B is contained in one of two halfspaces
generated by A, then either

1 (zn)n∈N converges finitely to a point z ∈ FixTA,B with PAz ∈ A ∩ B,
or

2 A ∩ B = ∅ and ‖zn‖ → +∞ in which case (PAzn)n∈N converges
finitely to a best approximation solution a ∈ A relative to A and B.

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 17
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Without asymptotic regularity or “one-side” property

A 4-cycle of the DR algorithm for a halfspace and a finite set.
Interchanging the roles of two sets gives finite convergence, as shown by
Aragón Artacho–Borwein–Tam 2016.

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 18
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Periodic behavior

Theorem (Bauschke–D–Lindstrom 2017)

Suppose that A is a hyperplane and that B = {b1, b2}, where b1 and b2 do
not belong to the same halfspace generated by A. Let (zn)n∈N be a DR
sequence for (A,B). Then

1 (zn)n∈N does not converge.

2 (zn)n∈N cycles after certain steps regardless the starting point if and
only if there exist k1, k2 ∈ Nr {0} such that k1dA(b1) = k2dA(b2).

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 19
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The case of a line and a circle

Fact (Borwein–Sims 2011)

Let α ∈ [0, 1[. Then the DR algorithm for

A = R× {α} and B =
{

(x , ρ) ∈ R2
∣∣ x2 + ρ2 = 1

}
is locally convergent around (±

√
1− α2, α).

Conjecture (BS11): The DR algorithm is actually globally convergent.
This has since been resolved in the affirmative by Benoist (2015).

Idea: Consider V : R2 → ]−∞,+∞] given by

V (x , ρ) := 1
2x

2−(1−α) ln |x |+α
√

1− x2−α ln(1+
√

1− x2)+ 1
2(ρ−α)2.

Then V decreases along DR sequences: V (TA,Bz) ≤ V (z) with equality if
and only if z ∈ FixTA,B .

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 21
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Finding a zero of a function

In this section,

f : X → [−∞,+∞] is proper with closed graph.

Consider the feasibility problem in X × R with constraints

A = X × {0} and B = gra f :=
{

(x , ρ) ∈ X × R
∣∣ f (x) = ρ

}
,

which can be cast as

find x ∈ X such that f (x) = 0.

I B is generally not convex unless f is affine.

I For a line and a circle: Up to symmetry, take f (x) = −
√
1− x2 + α.

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 22
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A Lyapunov-type approach

Definition (Lyapunov-type function)

A function V : X ×R→ ]−∞,+∞] is a Lyapunov-type function for f on a
nonempty convex subset D of X if it can be expressed in the form

V (x , ρ) = F (x) +
1

2
ρ2

for some proper coercive convex function F : D → ]−∞,+∞] whose
subdifferential satisfies

(∀x ∈ D) ∂F (x) ⊇

{{
f (x)
‖x∗‖2 x

∗ ∣∣ x∗ ∈ ∂0f (x)
}

if 0 /∈ ∂0f (x),

{0} if f (x) = 0.

∂0f := ∂f ∪ −∂(−f ): the symmetric (limiting) subdifferential of f .

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 23
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A Lyapunov-type approach: Some intuition

0 1 2 3 4 5 6

−2

0

2

z0

z

z+

z̄

A Lyapunov-type function for f (x) = 1
10 exp(x)− 1, which guarantees

global convergence of the DR algorithm to z̄ := (ln(10), 0).
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Convergence theorem

Write zn = (xn, ρn) ∈ X × R. Suppose that there exists a Lyapunov-type
function for f on D, that f is locally Lipschitz continuous on D r f −1(0),
and that

(∃n0 ∈ N)(∀n ≥ n0) xn ∈ D and xn+1 /∈ (∂0f )−1(0) r f −1(0).

Theorem (D–Tam 2017)

The DR sequence (zn)n∈N is bounded and asymptotically regular, and each
of its cluster points z̄ satisfy PAz̄ ∈ A ∩ B. Suppose, in addition, that
D ∩ f −1(0) = {x̄} is contained in D. Then

1 zn → z̄ with PAz̄ ∈ A ∩ B.

2 zn → z̄ = (x̄ , 0) ∈ A ∩ B provided that 0 6∈ ∂0f (x̄) and f |D is
continuous at x̄ .
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Linear convergence

Corollary

Suppose that D ∩ f −1(0) = {x̄} ⊆ D. Then

1 If f is continuously differentiable around x̄ with ∇f (x̄) 6= 0, then
zn → z̄ = (x̄ , 0) ∈ A ∩ B with R-linear rate.

2 If X = R and f is twice strictly differentiable at x̄ with f ′(x̄) 6= 0,
then zn → z̄ = (x̄ , 0) ∈ A ∩ B with Q-linear rate

κ :=
1√

1 + |f ′(x̄)|2
.

A sequence (zn)n∈N is said to converge to a point z̄

I with R-linear rate κ ∈ [0, 1[ if (∃η ∈ R+)(∀n ∈ N) ‖zn − z̄‖ ≤ ηκn;

I with Q-linear rate κ ∈ [0, 1[ if lim sup
n→∞

‖zn+1−z̄‖
‖zn−z̄‖ ≤ κ.
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Some examples

I X = R, f (x) = α exp(x)− β with (α, β) ∈ R2
++. One possible F is

F (x) :=

∫
f (x)
f ′(x)dx =

∫ (
1− β

α exp(−x)
)
dx = x + β

α exp(−x)

−→ Global Q-linear convergence with rate κ = 1/
√

1 + β2.

I X = R, p ∈ ]1,+∞[,

f (x) :=

{
xp if x ≥ 0,

x if x < 0,
∂0f (x) =


pxp−1 if x ≥ 0,

[0, 1] if x = 0,

1 if x < 0.
Note that f is nonconvex and nonsmooth at x = 0. Define F by

F (x) :=

{
1
2p x

2 if x ≥ 0,
1
2x

2 if x < 0,

then V is a Lyapunov-type function for f on R.
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Some examples

Suppose f = α‖ · ‖p for α ∈ Rr {0} and p ∈ ]0,+∞[. Then whenever
x 6= 0, we have ∂0f (x) = {αp‖x‖p−2x} and

f (x)
‖∇f (x)‖∇f (x) = α‖x‖p

α2p2‖x‖2p−2αp‖x‖
p−2x = 1

p x ,

which leads to F (x) = 1
2p‖x‖

2. The global convergence follows.

The same function F works for f = α| · |p sgn(·) on R.

-10 -5
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0 5 10
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10

Illustrations of the DR algorithm for f (x) = 3 3
√
x on [−10, 10]× [−10, 10].
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Outline

1 Introduction

2 Behavior of DR algorithm in possibly inconsistent case

3 Finite convergence

4 A Lyapunov-type approach to convergence theory

5 Local linear convergence
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Generalized DR operator

Let λ, µ ∈ ]0, 2] and α ∈ ]0, 1]. The generalized DR operator for (A,B)
with parameters (λ, µ, α) is defined by

Tα
λ,µ := (1− α) Id+αPµBP

λ
A.

I T 1
1,1 = PBPA is the classical alternating projection (AP) operator.

I T
1/2
2,2 = 1

2(Id+RBRA) is the classical DR operator.

I T
1/2
2,2α = (1− α)PA + α

2 (Id+RBRA) is the relaxed avaraged alternating
reflection (RAAR) operator.

I If B is an affine subspace of X , then

T
1/(1+α)
1+α,1+α = (1− α)PBPA +

α

2
(Id+RBRA)

(a convex combination of the classical AP and DR operators).
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Regularity of sets

Let ε ∈ R+ and δ ∈ R++. A set C is said to be (ε, δ)-regular at w ∈ X if

∀x , y ∈ C ∩ Bδ(w),∀u ∈ Nprox
C (x) : 〈u, y − x〉 ≤ ε‖u‖ · ‖y − x‖

and superregular at w if ∀ε ∈ R++, ∃δ ∈ R++: C is (ε, δ)-regular at w .

I Convex sets and sets with “smooth” boundary are superregular.

Nprox
C (x) := cone(P−1C (x)− x) =

{
λ(z − x)

∣∣ z ∈ P−1C (x), λ ∈ R+

}
.
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Key properties

Lemma

Let ε1 ∈ [0, 1/3], ε2 ∈ [0, 1[ and set γ := 1− α + α
(
1 + λε1

1−ε1

)(
1 + µε2

1−ε2

)
,

β := 1−α
α . If A and B are (ε1, δ)- and (ε2,

√
2δ)-regular at w ∈ A∩B, then

Tα
λ,µ is (A ∩ B ∩ Bδ(w), γ, β)-quasi firmly Fejér monotone on Bδ/2(w) in

the sense that

∀x ∈ Bδ/2(w), ∀x+ ∈ Tα
λ,µx , ∀x ∈ A ∩ B ∩ Bδ(w) :

‖x+ − x‖2 + β‖x − x+‖2 ≤ γ‖x − x‖2.

Lemma

Let ε ∈ [0, 1/3]. If A is superregular at w and {A,B} is strongly regular at
w ∈ A ∩ B, then there exist δ ∈ R++, ν ∈ R++ such that Tα

λ,µ is
(A ∩ B, ν)-quasi coercive on Bδ/2(w) in the sense that

∀x ∈ Bδ/2(w), ∀x+ ∈ Tα
λ,µx : ‖x − x+‖ ≥ νdA∩B(x).

{A,B} is strongly regular at w ∈ A ∩ B if NA(w) ∩ (−NB(w)) = {0}.
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Local linear convergence

Let A and B be closed subsets of X with A ∩ B 6= ∅. Suppose that {A,B}
is superregular and strongly regular at some point w ∈ A ∩ B.

Fact (Phan 2016)

When started at a point sufficiently close to w , the DR sequence converges
R-linearly to a point in A ∩ B.

Theorem (D–Phan 2016)

Let λ, µ ∈ ]0, 2] and α ∈ ]0, 1[. Then when started at a point sufficiently
close to w , the generalized DR sequence generated by Tα

λ,µ converges
R-linearly to a point in A ∩ B.

Minh N. Dao The Douglas–Rachford algorithm in nonconvex settings 33



Introduction Possibly inconsistent case Finite convergence A Lyapunov-type approach Local linear convergence
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