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Regularized loss minimization

Generic form for many ML problems:

min
w∈Rd

`(w) + f (w)

` is the loss function;

f is the regularizer, usually a (semi)norm;

Special interest:

sparsity;

computational efficiency.
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Moreau envelop and proximal map

Definition (Moreau’65)

Mf (y) = min
w

1
2‖w − y‖2 + f (w)

Pf (y) = argmin
w

1
2‖w − y‖2 + f (w)
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Proximal gradient (Fukushima & Mine’81)

min
w∈Rd

`(w) + f (w)

1 y t = w t−η∇`(w t);

2 w t+1 = Pηf (y t).

For f = ‖ · ‖1, obtain the shrinkage operator

[P‖·‖1(y)]i = sign(yi )(|yi | − 1)+.

guaranteed convergence, can be accelerated;

generalization of projected gradient: f = ιC ;

reveals the sparsity-inducing property.

Refs: Combettes & Wajs’05; Beck & Teboulle’09; Duchi & Singer’09; Nesterov’13; etc.
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Then A Miracle Occurs...

Step 2: Pf (y) = argmin
w

1
2 ‖y −w‖2 + f (w)
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How to deal with sum?

Typical structured sparse regularizers:

f (w) =
∑

i

fi (w);

Theorem (Parallel Sum)

Pf+g = (P−12f + P−12g )−1 ◦ (2Id).

Not directly useful due to the inversion;

Can numerically reduce to Pf and Pg (Combettes et al.’11);

But a two-loop routine can be as slow as subgradient descent
(Schmidt et.al’11; Villa et al.’13).
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Two previous results

Theorem (Friedman et al.’07)

P‖·‖1+‖·‖TV = P‖·‖1 ◦ P‖·‖TV , where ‖w‖TV =
d−1∑

i=1

|wi − wi+1| .

Theorem (Jenatton et al.’11)

Assuming the groups {gi} form a laminar system (gi ∩ gj ∈ {gi , gj , ∅}),
then, if appropriately ordered,

P∑k
i=1 ‖·‖gi

= P‖·‖g1
◦ · · · ◦ P‖·‖gk

,

where ‖ · ‖gi is the restriction of lp, p ∈ {1, 2,∞} to the group gi .
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(Wild) Generalization

Pf+g
?
= Pf ◦ Pg

?
= Pg ◦ Pf .
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Product of Prox’s

Long line of work: von Neumann, Halperin, Amemiya and Ando,
Stiles, Dye, Reich, Bruck, Tseng, Brézis and Lions, etc., etc.

interest was in the asymptotic behaviour

in some sense, we want one-step convergence of such algs
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Bad news

Theorem

On the real line, ∃h such that Ph = Pf ◦ Pg .

Not necessarily h = f + g , though

Example (A simple counterexample)

Consider R2, and let f = ι{x1=x2}, g = ι{x2=0}.

x1

x2

f = ι{x1=x2}

g = ι{x2=0}

Pf =

[
0.5 0.5
0.5 0.5

]
, Pg =

[
1 0
0 0

]
.

But Pf ◦ Pg =

[
0.5 0
0.5 0

]

no h such that Ph = Pf ◦ Pg
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Nevertheless

Not possible to always have the decomposition — too ambitious

More modest goal: decomposition to hold for certain functions

Manipulating the optimality conditions:

Pf+g (z) = argminw
1
2 ‖z −w‖2 + (f + g)(w)

Pg (z) = argminw
1
2 ‖z −w‖2 + g(w)

Pf (Pg (z)) = argminw
1
2

∥∥Pg (z)−w
∥∥2 + f (w).

Theorem

A sufficient condition for Pf+g (z) = Pf

(
Pg (z)

)
is

∀ y ∈ dom g , ∂g(Pf (y)) ⊇ ∂g(y).

“Proof” works as long as f + g is convex

Y-L. Yu (UWaterloo) On Decomposing the Proximal Map September 19, 2017 14 / 33



Nevertheless

Not possible to always have the decomposition — too ambitious

More modest goal: decomposition to hold for certain functions

Manipulating the optimality conditions:

Pf+g (z)− z + ∂(f + g)(Pf+g (z)) 3 0

Pg (z)− z + ∂g(Pg (z)) 3 0

Pf (Pg (z))− Pg (z) + ∂f (Pf (Pg (z))) 3 0.

Theorem

A sufficient condition for Pf+g (z) = Pf

(
Pg (z)

)
is

∀ y ∈ dom g , ∂g(Pf (y)) ⊇ ∂g(y).

“Proof” works as long as f + g is convex

Y-L. Yu (UWaterloo) On Decomposing the Proximal Map September 19, 2017 14 / 33



Nevertheless

Not possible to always have the decomposition — too ambitious

More modest goal: decomposition to hold for certain functions

Manipulating the optimality conditions:

Pf+g (z)− z + ∂(f + g)(Pf+g (z)) 3 0

Pf (Pg (z))− z + ∂g(Pg (z)) + ∂f (Pf (Pg (z))) 3 0.

Theorem

A sufficient condition for Pf+g (z) = Pf

(
Pg (z)

)
is

∀ y ∈ dom g , ∂g(Pf (y)) ⊇ ∂g(y).

“Proof” works as long as f + g is convex

Y-L. Yu (UWaterloo) On Decomposing the Proximal Map September 19, 2017 14 / 33



Nevertheless

Not possible to always have the decomposition — too ambitious

More modest goal: decomposition to hold for certain functions

Manipulating the optimality conditions:

Pf+g (z)− z + ∂(f + g)(Pf+g (z)) 3 0

Pf (Pg (z))− z + ∂g(Pg (z)) + ∂f (Pf (Pg (z))) 3 0.

Theorem

A sufficient condition for Pf+g (z) = Pf

(
Pg (z)

)
is

∀ y ∈ dom g , ∂g(Pf (y)) ⊇ ∂g(y).

“Proof” works as long as f + g is convex

Y-L. Yu (UWaterloo) On Decomposing the Proximal Map September 19, 2017 14 / 33



The rest is easy

Find f and g that clinch our sufficient condition.
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Recent Results

More sufficient conditions in (Bauschke and Combettes, 2017)

(Adly et al., 2017) removes any condition by re-defining one prox
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“Trivialities”

Theorem

Fix f . Pf+g = Pf ◦ Pg for all g if and only if

dim(H) ≥ 2; f ≡ c or f = ι{w} + c for some c ∈ R and w ∈ H;

dim(H) = 1 and f = ιC + c for some c ∈ R and set C that is closed
and convex.

Asymmetry.

Theorem

Fix g . Pf+g = Pf ◦ Pg for all f if and only if g is continuous affine.

Reassuring the impossibility to always have Pf+g = Pf ◦ Pg ;

Still hope to get interesting results!
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Scaling Invariant ⇔ Positive Homogeneous

∂g(Pf (y)) ⊇ ∂g(y)

g positive homogeneous ⇔ ∀λ > 0, ∂g(λw) = ∂g(w) ⇒ ∀z ,Pf (z) ∝ z

Theorem

Fix f . The following are equivalent (provided dim(H) ≥ 2):

i). f = h(‖·‖) for some increasing function h : R+ → R ∪ {∞};
ii). For all perpendicular x ⊥ y , f (x + y) ≥ f (y);

iii). For all z ∈ H, Pf (z) = λz · z for some λz ∈ [0, 1];

iv). 0 ∈ dom f and Pf+κ = Pf ◦ Pκ for all positive homogeneous κ.

If dim(H) = 1, only ii) =⇒ i) ceases to hold.
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Some Implications

Theorem

Fix f . The following are equivalent (provided dim(H) ≥ 2):

i). f = h(‖·‖) for some increasing function h : R+ → R ∪ {∞};
ii). For all perpendicular x ⊥ y , f (x + y) ≥ f (y);

iii). For all z ∈ H, Pf (z) = λz · z for some λz ∈ [0, 1];

iv). 0 ∈ dom f and Pf+κ = Pf ◦ Pκ for all positive homogeneous κ.

If dim(H) = 1, only ii) =⇒ i) ceases to hold.

i) ⇐⇒ ii)

Characterizing representer theorem (Dinuzzo & Schölkopf’12)

argmin `(〈w , x1〉 , . . . , 〈w , xn〉) + f (w) ∈ span{x1, . . . , xn}
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Characterizing the Ball

0

C

Y-L. Yu (UWaterloo) On Decomposing the Proximal Map September 19, 2017 21 / 33



Some Implications

Theorem

Fix f . The following are equivalent (provided dim(H) ≥ 2):

i). f = h(‖·‖) for some increasing function h : R+ → R ∪ {∞};
ii). For all perpendicular x ⊥ y , f (x + y) ≥ f (y);

iii). For all z ∈ H, Pf (z) = λz · z for some λz ∈ [0, 1];

iv). 0 ∈ dom f and Pf+κ = Pf ◦ Pκ for all positive homogeneous κ.

If dim(H) = 1, only ii) =⇒ i) ceases to hold.

i) =⇒ iv)

Pλ‖·‖2+κ = Pλ‖·‖2 ◦ Pκ = 1
λ+1Pκ

Double shrinkage;

κ = ‖·‖1: Elastic net (Zou & Hastie’05);

Adding an l2-ish regularizer, computationally, is free.
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i) =⇒ iv)

Tree-structured group norms
(Jenatton et al.’11)

P∑
i ‖·‖gi

= P‖·‖g1
◦ · · · ◦ P‖·‖gk
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Choquet Integral (a.k.a. Lovász Extension)

For an increasing set function µ : 2[d ] → R:

g(w) :=

∞∫

0

µ([[w ≥ t]]) dt +

0∫

−∞

[µ([[w ≥ t]])− µ([d ])]dt,

where we treat w : {1, . . . , d} → R.

g is positive homogeneous

g(w + z) 6= g(w) + g(z) in general

g(w + z) ≤ g(w) + g(z) iff µ is submodular:

µ(A ∩ B) + µ(A ∪ B) ≤ µ(A) + µ(B)

if ∀i , j , (wi − wj)(zi − zj) ≥ 0, then g(w + z) = g(w) + g(z)

minA⊆[d ] µ(A) = minw∈[0,1] g(w).
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Further Properties of Choquet Integral

Theorem

Let g be the Choquet integral of some submodular function. If for all i
and j ,

(wi − wj)(zi − zj) ≥ 0, then ∂g(w) ∩ ∂g(z) 6= ∅

wi ≥ wj =⇒ zi ≥ zj , then ∂g(w) ⊆ ∂g(z).

Theorem (Schmeidler’86)

If g is comonotone additive and increasing/continuous, then g is a
Choquet integral of some set function.

TV is a Choquet integral

‖w‖TV =
∑d−1

i=1 |wi − wi+1| .
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Permutation Invariant ⇔ Choquet Integral

∂g(Pf (y)) ⊇ ∂g(y)

For permutation-invariant f , recall

Pf (y) = argmin
x

1
2‖x − y‖2 + f (x).

By rearrangement inequality

yi ≥ yj =⇒ [Pf (y)]i ≥ [Pf (y)]j

Theorem

Let f be permutation invariant and g be the Choquet integral of some
submodular set function µ. Then, Pf+g = Pf ◦ Pg .
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Some Implications

Theorem

Let f be permutation invariant and g be the Choquet integral of some
submodular set function. Then, Pf+g = Pf ◦ Pg .

Special case f = ‖·‖1 in (Bach’11);

P‖·‖1+‖·‖TV = P‖·‖1 ◦ P‖·‖TV (Friedman et al.’07);

P∑k
i=1 ‖·‖gi

= P‖·‖g1
◦ · · · ◦ P‖·‖gk

(Jenatton et al.’11)
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Some Implications

‖w‖oscar =
∑

i<j

max{|wi |, |wj |}.

Feature grouping (Bondell & Reich’08)

P‖·‖oscar
in (Zhong & Kwok’11)

Efficient Sparse Modeling with Automatic Feature Grouping

of computationally expensive difference convex (DC)
programs. Moreover, it cannot obtain sparse solutions.

In this paper, we will focus on the OSCAR. With
a novel pairwise `∞ norm, it encourages both spar-
sity and equality of coefficients for correlated features.
Feature groups are automatically discovered simulta-
neously with regression shrinkage, without the need to
pre-specify the grouping structures as in group lasso.
Moreover, since the coefficients for the grouped fea-
tures are tied, the resultant model has a reduced model
complexity and is less prone to over-fitting.

Despite these advantages, the optimization problem of
OSCAR, though still convex, is much more challeng-
ing. Bondell and Reich (2008) proposed two solvers.
The first one involves a huge quadratic program (QP)
with O(d2) variables and O(d2) constraints, where d
is the number of features. The second approach in-
volves a sequence of (potentially smaller) QP’s with
an increasing number of constraints, which however
can go up to O(d!) in the worst case. Hence, both
solvers are not scalable and the experiments in (Bon-
dell & Reich, 2008) are limited to small feature sets.
Alternatively, as OSCAR’s pairwise `∞ norm is simply
the sum of `∞ norms over groups of two variables, one
can use the network flow algorithm recently proposed
in (Mairal et al., 2010a). However, this algorithm is
designed for general overlapping groups but not tai-
lored for OSCAR. Because of the O(d2) number of
groups in OSCAR, each iteration will involve solving
a maxflow problem on a canonical graph G = (V,E)
with |V | = |E| = O(d2), and results in a complexity

of O(|V |2|E| 12 ) = O(d5) (Mairal et al., 2010b).

In this paper, we propose an accelerated gradient al-
gorithm (Beck & Teboulle, 2009) that is tailored for
OSCAR’s optimization problem. By using a simple
group merging algorithm, the key projection step can
be solved exactly and efficiently in O(d log(d)) time.
Hence, the proposed algorithm is particularly efficient
on high-dimensional data sets.

The rest of this paper is organized as follows. In Sec-
tion 2, we first give a brief review on OSCAR and ac-
celerated gradient methods. Section 3 then describes
the proposed solver. Experimental results are pre-
sented in Section 4, and the last section gives some
concluding remarks.

2. Related Work

2.1. OSCAR

Let X ∈ Rn×d be the input data matrix (with each
row being an instance) and y ∈ Rn be the correspond-

ing output. We assume that y is centered, and each
column of X is standardized. OSCAR is formulated
as the following optimization problem:

min
β
‖y−Xβ‖2+λ1‖β‖1+λ2

∑

i<j

max{|βi|, |βj |}, (1)

where λ1, λ2 are regularization parameters. The
OSCAR regularizer consists of two parts: An `1-
regularizer which encourages sparsity as in lasso, and
a pairwise `∞-regularizer which encourages every co-
efficient pairs |βi|, |βj | to be equal (Figure 1).

(a) Lasso. (b) OSCAR.

Figure 1. Constraint regions for lasso and OSCAR.

Bondell and Reich (2008) proposed two solvers for (1).
Unfortunately, both of them are computationally ex-
pensive. The first solver involves a huge QP with
(d2+3d)/2 variables and d2+ d+1 linear constraints.
The second one (described in the web appendix B of
(Bondell & Reich, 2008)) uses a sequential QP algo-
rithm in which constraints are gradually added, but
the total number of constraints can be O(d!).

2.2. Accelerated Gradient Methods

Gradient methods are well-known for their simplic-
ity and scalability. However, a major drawback is
that they have slow convergence. In the past decades,
attempts were made to accelerate gradient methods.
Nesterov (1983) pioneered the “optimal method” for
smooth optimization, which achieves the optimal con-
vergence rate for a black-box model. Subsequent
works (Beck & Teboulle, 2009; Nesterov, 2007) ex-
tended this to composite optimization problems of the
form minβ f(β) + r(β), where f(β) is convex with
L-Lipschitz continuous gradient, and r(β) is convex
but nonsmooth. While gradient methods perform de-
scent by simply using the (sub)gradient, accelerated
methods first solve the following optimization problem
(often called the projection or proximal step)

argmin
β

Q(β; β̂
t
) ≡ (β − β̂

t
)T∇f(β̂t

)

+
L

2
‖β − β̂

t‖2 + r(β), (2)

where β̂
t
is the current estimate at iteration t. Note

that Q(β; β̂
t
) is a quadratic approximation on the

Let
κi (w) :=

∑

j :j<i

max{|wi |, |wj |}.

‖w‖oscar =
∑d

i=2 κi (w)

P‖·‖oscar
= Pκd ◦ · · · ◦ Pκ2

Given Pκi , constant time for Pκi+1
.
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Projection to intersection

Theorem (Barty, Roy and Strugarek, MOR’07, Proposition 3.1)

Let L ∩ C 6= ∅, where C is a closed convex set and L is a subspace. If
PC (L) ⊆ L, then PL∩C = PC ◦ PL.

f = ιC and g = ιL, follows from ∂g ≡ L⊥.
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One Solution for All, I

Theorem (Chambolle and Darbon, 2009)

Let ϕi : R→ R ∪ {∞}, i = 1, . . . , d , be closed convex univariate functions
and f : Rd → R be the Choquet integral of the set function µ. Let

u ∈ argmin
w∈Rd

f (w) +
d∑

i=1

ϕi (wi ), (1)

whose existence is assumed. For any t ∈ ∩i dom ∂ϕi , consider the discrete
problem:

min
A⊆[d ]

F (A) +
∑

i∈A
ϕ′i (t). (2)

If for all i , ϕ′i (t) is the smallest element in the subdifferential ∂ϕi (t)
(existence assumed), then the set [[u ≥ t]] solves (2).

If for all i , ϕ′i (t) is the largest element in the subdifferential ∂ϕi (t)
(existence assumed), then the set [[u > t]] solves (2).
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One Solution for All, II

Theorem (extending (Barlow and Brunk, 1972))

Let f be univariate convex and differentiable, with the induced Bregman
divergence Df (x , y) := f (x)− f (y)− f ′(y)(x − y). For any Choquet
integral g , the following problem

min
x∈Rp

p∑

i=1

wiDf (xi , yi ) + g(x) (3)

can be solved in two steps:

1.© z = argmin
x

1

2

p∑

i=1

wi (xi − f ′(yi ))2 + g(x)

2.© y? = (f ′)−1(z),
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Summary

Posed the question: Pf+g
?
= Pf ◦ Pg

?
= Pg ◦ Pf ;

Presented a sufficient condition: ∂g(Pf (y)) ⊇ ∂g(y);

Identified two major cases;

Immediately useful if plugged into splitting algs;

Y-L. Yu (UWaterloo) On Decomposing the Proximal Map September 19, 2017 33 / 33


	Motivation
	Setup
	A Naive Sufficient Condition
	Three Case Studies
	More Examples

