On Decomposing the Proximal Map

Yao-Liang Yu

University of Waterloo

Splitting Algorithms, Modern Operator Theory, and Applications
Oaxaca, Mexico
September 19, 2017

Table of Contents

(1) Motivation
(2) Setup
(3) A Naive Sufficient Condition

4 Three Case Studies
(5) More Examples

Regularized loss minimization

Generic form for many ML problems:

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{d}} \ell(\boldsymbol{w})+f(\boldsymbol{w})
$$

- ℓ is the loss function;
- f is the regularizer, usually a (semi)norm;

Special interest:

- sparsity;
- computational efficiency.

Moreau envelop and proximal map

Definition (Moreau'65)

$$
\begin{aligned}
\mathrm{M}_{f}(\boldsymbol{y}) & =\min _{\boldsymbol{w}} \frac{1}{2}\|\boldsymbol{w}-\boldsymbol{y}\|^{2}+f(\boldsymbol{w}) \\
\mathrm{P}_{f}(\boldsymbol{y}) & =\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{w}-\boldsymbol{y}\|^{2}+f(\boldsymbol{w})
\end{aligned}
$$

Proximal gradient (Fukushima \& Mine'81)

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{d}} \ell(\boldsymbol{w})+f(\boldsymbol{w})
$$

$$
\begin{aligned}
& \text { (1) } \boldsymbol{y}_{t}=\boldsymbol{w}_{t}-\eta \nabla \ell\left(\boldsymbol{w}_{t}\right) \text {; } \\
& \text { (2) } \boldsymbol{w}_{t+1}=\mathrm{P}_{\eta f}\left(\boldsymbol{y}_{t}\right) \text {. }
\end{aligned}
$$

For $f=\|\cdot\|_{1}$, obtain the shrinkage operator

$$
\left[\mathrm{P}_{\|\cdot\|_{1}}(\boldsymbol{y})\right]_{i}=\operatorname{sign}\left(y_{i}\right)\left(\left|y_{i}\right|-1\right)_{+} .
$$

- guaranteed convergence, can be accelerated;
- generalization of projected gradient: $f=\iota c$;
- reveals the sparsity-inducing property.

Refs: Combettes \& Wajs'05; Beck \& Teboulle'09; Duchi \& Singer'09; Nesterov'13; etc.

Then A Miracle Occurs...

"I think you should be more explicit here in step two."
from What's so Funny about Science? by Sidney Harris (1977)

Step 2: $\mathrm{P}_{f}(\boldsymbol{y})=\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{w}\|^{2}+f(\boldsymbol{w})$

How to deal with sum?

- Typical structured sparse regularizers:

$$
f(\boldsymbol{w})=\sum_{i} f_{i}(\boldsymbol{w})
$$

Theorem (Parallel Sum)

$$
\mathrm{P}_{f+g}=\left(\mathrm{P}_{2 f}^{-1}+\mathrm{P}_{2 g}^{-1}\right)^{-1} \circ(2 \mathrm{ld}) .
$$

- Not directly useful due to the inversion;
- Can numerically reduce to P_{f} and P_{g} (Combettes et al.'11);
- But a two-loop routine can be as slow as subgradient descent (Schmidt et.al'11; Villa et al.'13).

Table of Contents

(1) Motivation
(2) Setup
(3) A Naive Sufficient Condition

4 Three Case Studies
(5) More Examples

Two previous results

Theorem (Friedman et al.'07)

$$
\mathrm{P}_{\|\cdot\|_{1}+\|\cdot\|_{\mathrm{TV}}}=\mathrm{P}_{\|\cdot\|_{1}} \circ \mathrm{P}_{\|\cdot\|_{\mathrm{TV}}}, \quad \text { where } \quad\|\boldsymbol{w}\|_{\mathrm{TV}}=\sum_{i=1}^{d-1}\left|w_{i}-w_{i+1}\right| .
$$

Theorem (Jenatton et al.'11)

Assuming the groups $\left\{\mathrm{g}_{i}\right\}$ form a laminar system $\left(\mathrm{g}_{i} \cap \mathrm{~g}_{j} \in\left\{\mathrm{~g}_{i}, \mathrm{~g}_{j}, \emptyset\right\}\right.$), then, if appropriately ordered,

$$
P_{\sum_{i=1}^{k}\|\cdot\|_{\mathrm{g}_{i}}}=\mathrm{P}_{\|\cdot\|_{\mathrm{g}_{1}}} \circ \cdots \circ \mathrm{P}_{\|\cdot\|_{\mathrm{g}_{k}}},
$$

where $\|\cdot\|_{g_{i}}$ is the restriction of $\mathfrak{l}_{p}, p \in\{1,2, \infty\}$ to the group g_{i}.

(Wild) Generalization

$$
\mathrm{P}_{f+g} \stackrel{?}{=} \mathrm{P}_{f} \circ \mathrm{P}_{g} \stackrel{?}{=} \mathrm{P}_{g} \circ \mathrm{P}_{f} .
$$

Product of Prox's

- Long line of work: von Neumann, Halperin, Amemiya and Ando, Stiles, Dye, Reich, Bruck, Tseng, Brézis and Lions, etc., etc.
- interest was in the asymptotic behaviour
- in some sense, we want one-step convergence of such algs

Bad news

Theorem

On the real line, \exists h such that $P_{h}=P_{f} \circ P_{g}$.

- Not necessarily $h=f+g$, though

Example (A simple counterexample)

Consider \mathbb{R}^{2}, and let $f=\iota_{\left\{x_{1}=x_{2}\right\}}, g=\iota_{\left\{x_{2}=0\right\}}$.

Y-L. Yu (UWaterloo)

But $P_{f} \circ P_{g}=\left[\begin{array}{ll}0.5 & 0 \\ 0.5 & 0\end{array}\right]$
no h such that $P_{h}=P_{f} \circ P_{g}$

Table of Contents

(1) Motivation
(2) Setup
(3) A Naive Sufficient Condition
(4) Three Case Studies
(5) More Examples

Nevertheless

- Not possible to always have the decomposition - too ambitious
- More modest goal: decomposition to hold for certain functions
- Manipulating the optimality conditions:

$$
\begin{aligned}
\mathrm{P}_{f+g}(\boldsymbol{z}) & =\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{w}\|^{2}+(f+g)(\boldsymbol{w}) \\
\mathrm{P}_{g}(\boldsymbol{z}) & =\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{w}\|^{2}+g(\boldsymbol{w}) \\
\mathrm{P}_{f}\left(\mathrm{P}_{g}(\boldsymbol{z})\right) & =\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2}\left\|\mathrm{P}_{g}(\boldsymbol{z})-\boldsymbol{w}\right\|^{2}+f(\boldsymbol{w}) .
\end{aligned}
$$

A sufficient condition for

Nevertheless

- Not possible to always have the decomposition - too ambitious
- More modest goal: decomposition to hold for certain functions
- Manipulating the optimality conditions:

$$
\begin{aligned}
\mathrm{P}_{f+g}(z)-z+\partial(f+g)\left(\mathrm{P}_{f+g}(z)\right) & \ni 0 \\
\mathrm{P}_{g}(z)-z+\partial g\left(\mathrm{P}_{g}(z)\right) & \ni 0 \\
\mathrm{P}_{f}\left(\mathrm{P}_{g}(z)\right)-\mathrm{P}_{g}(z)+\partial f\left(\mathrm{P}_{f}\left(\mathrm{P}_{g}(z)\right)\right) & \ni 0 .
\end{aligned}
$$

Theorem

A sufficient condition for

Nevertheless

- Not possible to always have the decomposition - too ambitious
- More modest goal: decomposition to hold for certain functions
- Manipulating the optimality conditions:

$$
\begin{array}{r}
\mathrm{P}_{f+g}(z)-z+\partial(f+g)\left(\mathrm{P}_{f+g}(z)\right) \ni 0 \\
\mathrm{P}_{f}\left(\mathrm{P}_{g}(z)\right)-\boldsymbol{z}+\partial g\left(\mathrm{P}_{g}(z)\right)+\partial f\left(\mathrm{P}_{f}\left(\mathrm{P}_{g}(z)\right)\right) \ni 0 .
\end{array}
$$

Theorem

4 sufficient condition for

- "Proof" works as long as $f+g$ is convex

Nevertheless

- Not possible to always have the decomposition - too ambitious
- More modest goal: decomposition to hold for certain functions
- Manipulating the optimality conditions:

$$
\begin{array}{r}
\mathrm{P}_{f+g}(z)-\boldsymbol{z}+\partial(f+g)\left(\mathrm{P}_{f+g}(z)\right) \ni 0 \\
\mathrm{P}_{f}\left(\mathrm{P}_{g}(z)\right)-\boldsymbol{z}+\partial g\left(\mathrm{P}_{g}(z)\right)+\partial f\left(\mathrm{P}_{f}\left(\mathrm{P}_{g}(z)\right)\right) \ni 0 .
\end{array}
$$

Theorem

A sufficient condition for $P_{f+g}(z)=P_{f}\left(P_{g}(z)\right)$ is

$$
\forall \boldsymbol{y} \in \operatorname{dom} g, \partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y}) .
$$

- "Proof" works as long as $f+g$ is convex

The rest is easy

- Find f and g that clinch our sufficient condition.

Recent Results

- More sufficient conditions in (Bauschke and Combettes, 2017)
- (Adly et al., 2017) removes any condition by re-defining one prox

Table of Contents

(1) Motivation
(2) Setup
(3) A Naive Sufficient Condition

4 Three Case Studies
(5) More Examples

"Trivialities"

Theorem

Fix $f . P_{f+g}=P_{f} \circ P_{g}$ for all g if and only if

- $\operatorname{dim}(\mathcal{H}) \geq 2 ; f \equiv c$ or $f=\iota_{\{w\}}+c$ for some $c \in \mathbb{R}$ and $w \in \mathcal{H}$;
- $\operatorname{dim}(\mathcal{H})=1$ and $f=\iota_{C}+c$ for some $c \in \mathbb{R}$ and set C that is closed and convex.

Asymmetry.

Theorem

Fix $g . P_{f+g}=P_{f} \circ P_{g}$ for all f if and only if g is continuous affine.

- Reassuring the impossibility to always have $P_{f+g}=P_{f} \circ P_{g}$;
- Still hope to get interesting results!

Scaling Invariant \Leftrightarrow Positive Homogeneous

$$
\partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})
$$

Scaling Invariant \Leftrightarrow Positive Homogeneous

$$
\partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})
$$

g positive homogeneous

Scaling Invariant \Leftrightarrow Positive Homogeneous

$$
\partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})
$$

g positive homogeneous $\Leftrightarrow \forall \lambda>0, \partial g(\lambda w)=\partial g(w)$

Scaling Invariant \Leftrightarrow Positive Homogeneous

$$
\partial g\left(\mathrm{P}_{f}(y)\right) \supseteq \partial g(y)
$$

g positive homogeneous $\Leftrightarrow \forall \lambda>0, \partial g(\lambda w)=\partial g(w) \Rightarrow \forall z, P_{f}(z) \propto z$

Theorem

Fix f. The following are equivalent (provided dim(7L) 2):
\square
iii). For all $z \in 74, P(z)=\lambda_{z} \cdot z$ for some

Scaling Invariant \Leftrightarrow Positive Homogeneous

$$
\partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})
$$

g positive homogeneous $\Leftrightarrow \forall \lambda>0, \partial g(\lambda w)=\partial g(w) \Rightarrow \forall z, P_{f}(z) \propto z$

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i).
for some increasing function
ii). For all perpendicular x
iii). For all $z \in \mathcal{H}, P_{f}(z)=\lambda_{z} \cdot z$ for some $\lambda_{z} \in[0,1]$;
iv).
and
for all positive homogeneous
If $\operatorname{dim}(\mathcal{H})=1$, only ii) \Longrightarrow i) ceases to hold.

Scaling Invariant \Leftrightarrow Positive Homogeneous

$$
\partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})
$$

g positive homogeneous $\Leftrightarrow \forall \lambda>0, \partial g(\lambda w)=\partial g(w) \Rightarrow \forall z, P_{f}(z) \propto z$

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i). $f=h(\|\cdot\|)$ for some increasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{\infty\}$;
ii). For all perpendicular $x \perp y, f(x+y) \geq f(y)$;
iii). For all $z \in \mathcal{H}, P_{f}(z)=\lambda_{z} \cdot z$ for some $\lambda_{z} \in[0,1]$;
iv). $0 \in \operatorname{dom} f$ and $P_{f+\kappa}=P_{f} \circ P_{\kappa}$ for all positive homogeneous κ. If $\operatorname{dim}(\mathcal{H})=1$, only ii) \Longrightarrow i) ceases to hold.

Some Implications

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i). $f=h(\|\cdot\|)$ for some increasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{\infty\}$;
ii). For all perpendicular $x \perp y, f(x+y) \geq f(y)$;
iii).
for some
iv).
and
for all positive homogeneous
If $\operatorname{dim}(7 L)=1$, only ii)
i) ceases to hold.
i) \Longleftrightarrow ii)

- Characterizing representer theorem (Dinuzzo \& Schölkopf'12) $\operatorname{argmin} \ell\left(\left\langle\boldsymbol{w}, \boldsymbol{x}_{1}\right\rangle, \ldots,\left\langle\boldsymbol{w}, \boldsymbol{x}_{n}\right\rangle\right)+f(\boldsymbol{w}) \in \operatorname{span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$

Some Implications

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i). $f=h(\|\cdot\|)$ for some increasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{\infty\}$;
ii). For all perpendicular $x \perp y, f(x+y) \geq f(y)$;
iii). For all $z \in \mathcal{H}, P_{f}(z)=\lambda_{z} \cdot z$ for some $\lambda_{z} \in[0,1]$;
iv). $0 \in \operatorname{dom} f$ and $P_{f+\kappa}=P_{f} \circ P_{\kappa}$ for all positive homogeneous κ.

If $\operatorname{dim}(\mathcal{H})=1$, only ii) \Longrightarrow i) ceases to hold.
i) \Longleftrightarrow ii)

- Characterizing representer theorem (Dinuzzo \& Schölkopf'12)

$$
\operatorname{argmin} \ell\left(\left\langle\boldsymbol{w}, \boldsymbol{x}_{1}\right\rangle, \ldots,\left\langle\boldsymbol{w}, \boldsymbol{x}_{n}\right\rangle\right)+f(\boldsymbol{w}) \in \operatorname{span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}
$$

Characterizing the Ball

Some Implications

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i). $f=h(\|\cdot\|)$ for some increasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{\infty\}$;
ii). For all perpendicular
iii).

```
for some
```

iv). $0 \in \operatorname{dom} f$ and $P_{f+\kappa}=P_{f} \circ P_{\kappa}$ for all positive homogeneous κ.
i) \Longrightarrow iv)

$$
\mathrm{P}_{\lambda\|\cdot\|^{2}+\kappa}=\mathrm{P}_{\lambda\|\cdot\|^{2}} \circ \mathrm{P}_{\kappa}=\frac{1}{\lambda+1} \mathrm{P}_{\kappa}
$$

- Double shrinkage;
- $\kappa=\|\cdot\|_{1}$: Elastic net (Zou \& Hastie'05);
- Adding an \mathfrak{l}_{2}-ish regularizer, computationally, is free.

Some Implications

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i). $f=h(\|\cdot\|)$ for some increasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{\infty\}$;
ii). For all perpendicular $x \perp y, f(x+y) \geq f(y)$;
iii). For all $z \in \mathcal{H}, P_{f}(z)=\lambda_{z} \cdot z$ for some $\lambda_{z} \in[0,1]$;
iv). $0 \in \operatorname{dom} f$ and $P_{f+\kappa}=P_{f} \circ P_{\kappa}$ for all positive homogeneous κ.

If $\operatorname{dim}(\mathcal{H})=1$, only ii) \Longrightarrow i) ceases to hold.
i) \Longrightarrow iv)

$$
P_{\lambda\|\cdot\|^{2}+\kappa}=P_{\lambda\|\cdot\|^{2}} \circ P_{\kappa}=\frac{1}{\lambda+1} P_{\kappa}
$$

- Double shrinkage;
- $\kappa=\|\cdot\|_{1}$: Elastic net (Zou \& Hastie'05);
- Adding an \mathfrak{l}_{2}-ish regularizer, computationally, is free.

Some Implications

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i). $f=h(\|\cdot\|)$ for some increasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{\infty\}$;
ii). For all perpendicular
iii).
iv). $0 \in \operatorname{dom} f$ and $P_{f+\kappa}=P_{f} \circ P_{\kappa}$ for all positive homogeneous κ.

i) \Longrightarrow iv)

Tree-structured group norms (Jenatton et al.'11)

$$
\mathrm{P}_{\sum_{i}\|\cdot\|_{\mathrm{g}_{i}}}=\mathrm{P}_{\|\cdot\|_{\mathrm{g}_{1}}} \circ \cdots \circ \mathrm{P}_{\|\cdot\|_{g_{k}}} .
$$

Some Implications

Theorem

Fix f. The following are equivalent (provided $\operatorname{dim}(\mathcal{H}) \geq 2$):
i). $f=h(\|\cdot\|)$ for some increasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{\infty\}$;
ii). For all perpendicular $x \perp y, f(x+y) \geq f(y)$;
iii). For all $z \in \mathcal{H}, P_{f}(z)=\lambda_{z} \cdot z$ for some $\lambda_{z} \in[0,1]$;
iv). $0 \in \operatorname{dom} f$ and $P_{f+\kappa}=P_{f} \circ P_{\kappa}$ for all positive homogeneous κ.

i) \Longrightarrow iv)

Tree-structured group norms (Jenatton et al.'11)

$$
\mathrm{P}_{\sum_{i}\|\cdot\|_{\mathrm{g}_{i}}}=\mathrm{P}_{\|\cdot\|_{\mathrm{g}_{1}}} \circ \cdots \circ \mathrm{P}_{\|\cdot\|_{\mathrm{g}_{k}}}
$$

Choquet Integral (a.k.a. Lovász Extension)

For an increasing set function $\mu: 2^{[d]} \rightarrow \mathbb{R}$:

$$
g(\boldsymbol{w}):=\int_{0}^{\infty} \mu(\llbracket \boldsymbol{w} \geq t \rrbracket) \mathrm{d} t+\int_{-\infty}^{0}[\mu(\llbracket \boldsymbol{w} \geq t \rrbracket)-\mu([d])] \mathrm{d} t,
$$

where we treat $w:\{1, \ldots, d\} \rightarrow \mathbb{R}$.

- g is positive homogeneous
- $g(w+z) \neq g(w)+g(z)$ in general
- $g(w+z) \leq g(w)+g(z)$ iff μ is submodular:

$$
\mu(A \cap B)+\mu(A \cup B) \leq \mu(A)+\mu(B)
$$

- if $\forall i, j,\left(w_{i}-w_{j}\right)\left(z_{i}-z_{j}\right) \geq 0$, then $g(w+z)=g(w)+g(z)$
- $\min _{A \subseteq[d]} \mu(A)=\min _{w \in[0,1]} g(w)$.

Further Properties of Choquet Integral

Theorem

Let g be the Choquet integral of some submodular function. If for all i and j,

- $\left(w_{i}-w_{j}\right)\left(z_{i}-z_{j}\right) \geq 0$, then $\partial g(w) \cap \partial g(z) \neq \emptyset$
- $w_{i} \geq w_{j} \Longrightarrow z_{i} \geq z_{j}$, then $\partial g(w) \subseteq \partial g(z)$.

Theorem (Schmeidler'86)

If g is comonotone additive and increasing/continuous, then g is a
Choquet integral of some set function.

TV is a Choquet integral

$$
\|\boldsymbol{w}\|_{\mathrm{TV}}=\sum_{i=1}^{d-1}\left|w_{i}-w_{i+1}\right| .
$$

Permutation Invariant \Leftrightarrow Choquet Integral

$$
\partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})
$$

- For permutation-invariant f, recall

By rearrangement inequality

Theorem
 Iet f be permutation invariant and g be the Choquet integral of some submodular set function μ. Then,

Permutation Invariant \Leftrightarrow Choquet Integral

$$
\partial g\left(\mathrm{P}_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})
$$

- For permutation-invariant f, recall

$$
\mathrm{P}_{f}(\boldsymbol{y})=\underset{\boldsymbol{x}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+f(\boldsymbol{x}) .
$$

By rearrangement inequality

$$
y_{i} \geq y_{j} \Longrightarrow\left[\mathrm{P}_{f}(\boldsymbol{y})\right]_{i} \geq\left[\mathrm{P}_{f}(\boldsymbol{y})\right]_{j}
$$

Theorem
 Let f be permutation invariant and g be the Choquet integral of some submodular set function Then,

Permutation Invariant \Leftrightarrow Choquet Integral

$$
\partial g\left(\mathrm{P}_{f}(y)\right) \supseteq \partial g(y)
$$

- For permutation-invariant f, recall

$$
\mathrm{P}_{f}(\boldsymbol{y})=\underset{\boldsymbol{x}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+f(\boldsymbol{x}) .
$$

By rearrangement inequality

$$
y_{i} \geq y_{j} \Longrightarrow\left[\mathrm{P}_{f}(\boldsymbol{y})\right]_{i} \geq\left[\mathrm{P}_{f}(\boldsymbol{y})\right]_{j}
$$

Theorem

Let f be permutation invariant and g be the Choquet integral of some submodular set function μ. Then, $\mathrm{P}_{f+g}=\mathrm{P}_{f} \circ \mathrm{P}_{g}$.

Some Implications

Theorem

Let f be permutation invariant and g be the Choquet integral of some submodular set function. Then, $P_{f+g}=P_{f} \circ P_{g}$.

- Special case $f=\|\cdot\|_{1}$ in (Bach'11);
- $P_{\|\cdot\|_{1}+\|\cdot\|_{T V}}=P_{\|\cdot\|_{1}} \circ P_{\|\cdot\|_{T V}}$ (Friedman et al.'07);
- $P_{\sum_{i=1}^{k}\|\cdot\|_{g_{i}}}=P_{\|\cdot\|_{g_{1}}} \circ \cdots \circ P_{\|\cdot\|_{g_{k}}}$ (Jenatton et al.'11)

Some Implications

$$
\|\boldsymbol{w}\|_{\text {oscar }}=\sum_{i<j} \max \left\{\left|w_{i}\right|,\left|w_{j}\right|\right\} .
$$

- Feature grouping (Bondell \& Reich'08)
- $P_{\|\cdot\|_{\text {oscar }}}$ in (Zhong \& Kwok'11)

Let

$$
\kappa_{i}(\boldsymbol{w}):=\sum_{j: j<i} \max \left\{\left|w_{i}\right|,\left|w_{j}\right|\right\} .
$$

- $\|\boldsymbol{w}\|_{\text {oscar }}=\sum_{i=2}^{d} \kappa_{i}(\boldsymbol{w})$
- $P_{\|\cdot\|_{\text {oscar }}}=P_{\kappa_{d}} \circ \cdots \circ P_{k_{2}}$
- Given $\mathrm{P}_{\kappa_{i}}$, constant time for $\mathrm{P}_{\kappa_{i+1}}$.

Table of Contents

(1) Motivation
(2) Setup
(3) A Naive Sufficient Condition

4 Three Case Studies
(5) More Examples

Projection to intersection

Theorem (Barty, Roy and Strugarek, MOR'07, Proposition 3.1)

 Let $L \cap C \neq \emptyset$, where C is a closed convex set and L is a subspace. If $P_{C}(L) \subseteq L$, then $P_{L \cap C}=P_{C} \circ P_{L}$.$$
f=\iota_{C} \text { and } g=\iota_{L}, \text { follows from } \partial g \equiv L^{\perp} .
$$

One Solution for All, I

Theorem (Chambolle and Darbon, 2009)

Let $\varphi_{i}: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}, i=1, \ldots, d$, be closed convex univariate functions and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the Choquet integral of the set function μ. Let

$$
\begin{equation*}
\boldsymbol{u} \in \underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} f(w)+\sum_{i=1}^{d} \varphi_{i}\left(w_{i}\right) \tag{1}
\end{equation*}
$$

whose existence is assumed. For any $t \in \cap_{i}$ dom $\partial \varphi_{i}$, consider the discrete problem:

$$
\begin{equation*}
\min _{A \subseteq[d]} F(A)+\sum_{i \in A} \varphi_{i}^{\prime}(t) \tag{2}
\end{equation*}
$$

- If for all $i, \varphi_{i}^{\prime}(t)$ is the smallest element in the subdifferential $\partial \varphi_{i}(t)$ (existence assumed), then the set $\llbracket u \geq t \rrbracket$ solves (2).
- If for all $i, \varphi_{i}^{\prime}(t)$ is the largest element in the subdifferential $\partial \varphi_{i}(t)$ (existence assumed), then the set $\llbracket u>t \rrbracket$ solves (2).

One Solution for All, II

Theorem (extending (Barlow and Brunk, 1972))

Let f be univariate convex and differentiable, with the induced Bregman divergence $D_{f}(x, y):=f(x)-f(y)-f^{\prime}(y)(x-y)$. For any Choquet integral g, the following problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} \sum_{i=1}^{p} w_{i} D_{f}\left(x_{i}, y_{i}\right)+g(\boldsymbol{x}) \tag{3}
\end{equation*}
$$

can be solved in two steps:

$$
\begin{aligned}
& \text { (1.) } \boldsymbol{z}=\underset{\boldsymbol{x}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{p} w_{i}\left(x_{i}-f^{\prime}\left(y_{i}\right)\right)^{2}+g(\boldsymbol{x}) \\
& \text { (2.) } \boldsymbol{y}^{\star}=\left(f^{\prime}\right)^{-1}(\boldsymbol{z}),
\end{aligned}
$$

Summary

- Posed the question: $\mathrm{P}_{f+g} \stackrel{?}{\stackrel{ }{P}} \mathrm{P}_{\mathrm{f}} \circ \mathrm{P}_{g} \stackrel{?}{=} \mathrm{P}_{\mathrm{g}} \circ \mathrm{P}_{\mathrm{f}}$;
- Presented a sufficient condition: $\partial g\left(P_{f}(\boldsymbol{y})\right) \supseteq \partial g(\boldsymbol{y})$;
- Identified two major cases;
- Immediately useful if plugged into splitting algs;

