Minimization of Quadratic

 Functions on Convex Sets

 Functions on Convex Sets without Asymptotes

J.E. Martínez-Legaz, D. Noll, W. Sosa

Splitting Algorithms, Modern Operator Theory, and Applications

Dedicated to Jonathan M. Borwein
Casa Matemática Oaxaca September 19, 2017

INTRODUCTION

$$
\begin{aligned}
& q: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& q(x):=\frac{1}{2} x^{\top} A x+b^{\top} x+c \\
& A=A^{\top} \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}
\end{aligned}
$$

F convex set in \mathbb{R}^{n}
F is an $F W$-set if every quadratic function q which is bounded below on F attains its infimum on F.

Every compact convex set is an $F W$-set.

Every convex polyhedron P is an $F W$-set. (M. Frank, P. Wolfe, 1956).
F is a $q F W$-set if the property holds for every quadratic function q which is in addition quasiconvex on F.
F is a $c F W$-set if the property holds for every quadratic function q which is in addition convex on F.

PROPOSITION.

Affine images of cFW-sets are cFW-sets.
Affine images of $q F W$-sets are q FW-sets.
Affine images of FW-sets are FW-sets.

PROPOSITION.

If the union of two FW-sets is convex, then it is FW, too.
The analogous statement holds for qFW-sets.

f-ASYMPTOTES

M affine manifold in \mathbb{R}^{n}
F closed convex set in \mathbb{R}^{n}
M is called an f-asymptote (Klee, 1960) of F if $F \cap M=\emptyset$ and $\operatorname{dist}(F, M)=0$.

THEOREM.

Let F be a convex set in \mathbb{R}^{n}.
Then the following statements are equivalent:
(i) F is qFW.
(ii) F is cFW .
(iii) F has no f-asymptotes.
(iv) $P(F)$ is closed for every orthogonal projection P.

THEOREM. (Z.-Q. Luo, S. Zhang, 1999). Under any linear (or affine) map, the image of a convex region in \mathbb{R}^{n} defined by convex quadratic constraints is always a closed set.

COROLLARY (Z.-Q. Leo, S. Chang, 1999).
A convex region in \mathbb{R}^{n} defined by convex quadratic constraints is always qFW.

COROLLARY.

FW sets have no f -asymptotes.
COROLLARY.
Any finite intersection of qFW-sets is again qFW.

COROLLARY.

If F_{1}, \ldots, F_{m} are qFW-sets, then the Cartesian product $F:=F_{1} \times \ldots \times F_{m}$ is qFW .

PROOF.
Suppose $F_{i} \subset \mathbb{R}^{d_{i}}$.
Then

$$
\begin{aligned}
F= & \left(F_{1} \times \mathbb{R}^{d_{2}} \times \cdots \times \mathbb{R}^{d_{m}}\right) \\
& \cap\left(\mathbb{R}^{d_{1}} \times F_{2} \times \mathbb{R}^{d_{3}} \times \cdots \times \mathbb{R}^{d_{m}}\right) \\
& \cap \cdots \\
& \cap\left(\mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{m-1}} \times F_{m}\right) .
\end{aligned}
$$

EXAMPLE (Z.-Q. Luo, S. Zhang, 1999). minimize $\quad q(x):=x_{1}^{2}-2 x_{1} x_{2}+x_{3} x_{4}$ subject to $c_{1}(x):=x_{1}^{2}-x_{3} \leq 0$
$c_{2}(x):=x_{2}^{2}-x_{4} \leq 0$ $x:=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$
$F:=\left\{x \in \mathbb{R}^{4}: c_{1}(x) \leq 0, c_{2}(x) \leq 0\right\}$ is a qFW-set.

$$
\begin{aligned}
\inf _{x \in F} q(x) & =\inf \left\{x_{1}^{2}-2 x_{1} x_{2}+x_{1}^{2} x_{2}^{2}\right\} \\
& =\inf \left\{x_{1}^{2}+\left(1-x_{1} x_{2}\right)^{2}\right\}-1=-1
\end{aligned}
$$

$q(x)>-1$ for every $x \in F$

EXAMPLE.
$F:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\exp \left(-x^{2}\right)-y \leq 0\right\}$ is convex and closed.
F does not have f-asymptotes.
$q(x, y):=y-x^{2}$

$$
\begin{aligned}
q(x, y) & \geq \exp \left(-x^{2}\right)>0 \text { for every }(x, y) \in F \\
0 & \leq \inf _{(x, y) \in F} q(x, y) \leq \inf _{x \in \mathbb{R}} q\left(x, x^{2}+\exp \left(-x^{2}\right)\right) \\
& =\inf _{x \in \mathbb{R}} \exp \left(-x^{2}\right)=0
\end{aligned}
$$

PROPOSITION.

Let F be a qFW-set in \mathbb{R}^{n} and q be a quadratic function bounded below on F such that its restriction to F has a nonempty convex sublevel set.
Then q attains its infimum on F.

MOTZKIN DECOMPOSABLE SETS

F nonempty closed convex set in \mathbb{R}^{n}
F is called Motzkin decomposable if there exists a compact convex set C and a closed convex cone D such that $F=C+D$.

EXAMPLE.

$D:=\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y \geq 0, x y-z^{2} \geq 0\right\}$ is a closed convex cone.

$$
q(x, y, z):=x^{2}+(z-1)^{2}
$$

$q\left(\frac{1}{k}, \frac{(k+1)^{2}}{k}, 1+\frac{1}{k}\right)=\frac{2}{k^{2}} \rightarrow 0$
$\inf _{x \in D} q(x, y, z)=0$
$q(x, y, z)>0$ for every $(x, y, z) \in D$

EXAMPLE.
$F:=\left\{(x, y, z) \in \mathbb{R}^{3}: z \geq\left(x^{2}+y^{2}\right)^{\frac{1}{2}}\right\}$
is convex and closed.
$q(x, y, z):=(x-1)^{2}-y+z$
$q\left(1, k,\left(1+k^{2}\right)^{\frac{1}{2}}\right)=\left(1+k^{2}\right)^{\frac{1}{2}}-k \longrightarrow 0$

$$
\begin{aligned}
(x, y, z) & \in F \\
& \Longrightarrow z \geq\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \geq y \\
& \Longrightarrow q(x, y, z) \geq 0
\end{aligned}
$$

$(x, y, z) \in F$

$$
\begin{aligned}
& \Longrightarrow \text { either } x \neq 1 \text { or } z \geq\left(1+y^{2}\right)^{\frac{1}{2}}>y \\
& \Longrightarrow q(x, y, z)>0
\end{aligned}
$$

THEOREM.

Let F be a Motzkin decomposable closed convex set.
Then the following statements are equivalent:
(i) F is FW.
(ii) F is qFW.
(iii) $0^{+} F$ is polyhedral.

PROOF (sketch):
(i) \Longrightarrow (ii) is obvious.
(ii) \Longrightarrow (iii) uses Mirkil's Theorem:

THEOREM (H. Mirkil, 1957).
If a closed convex cone has all its 2-dimensional projections closed, then it is polyhedral.
(iii) \Longrightarrow (i) is based in the following facts:

1) If $F=C+0^{+} F$, with C compact and convex, and

$$
q(x):=\frac{1}{2} x^{\top} A x+b^{\top} x
$$

then

$$
\inf _{x \in F} q(x)=\inf _{y \in C}\left\{q(y)+\inf _{z \in 0^{+} F}\left\{y^{\top} A z+q(z)\right\}\right\}
$$

2) Let D be a polyhedral convex cone and define

$$
f(c):=\inf _{x \in D}\left\{c^{\top} x+\frac{1}{2} x^{\top} G x\right\} .
$$

We assume that $x^{\top} G x \geq 0$ for every $x \in D$.
Then one has:

$$
\operatorname{dom}(f)=\left\{c: c^{\top} x \geq 0 \forall x \in D \text { s.t. } x^{\top} G x=0\right\} .
$$

The right hand side of this equality is a polyhedral convex cone.
Consequently, f is continuous relative to $\operatorname{dom}(f)$.

$$
F:=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0, x y \geq 1\right\}
$$

COROLLARY.

A Motzkin decomposable set without f-asymptotes is FW.

THEOREM.

Any nonempty intersection of finitely many Motzkin decomposable FW-sets is again a Motzkin decomposable FW-set.

PROPOSITION.

If the preimage $T^{-1}(F)$ of a Motzkin decomposable FW-set F under a linear mapping T is nonempty, it is a Motzkin decomposable FW-set too.

PROOF.

$$
T^{-1}(F)=\left(T_{(K e r T)^{\perp}}\right)^{-1}(F \cap R(T))+K e r T
$$

q-ASYMPTOTES

A nonempty closed set in \mathbb{R}^{n}
F nonempty closed convex set in \mathbb{R}^{n}
A is said to be asymptotic to F if
$A \cap F=\emptyset$ and $\operatorname{dist}(F, A)=0$.
$Q:=\left\{x \in \mathbb{R}^{n}: q(x):=\frac{1}{2} x^{\top} A x+2 b^{\top} x+c=0\right\}$
is a q-asymptote of F if
$F \cap Q=\emptyset$ and $\operatorname{dist}(Q \times\{0\},\{(x, q(x)): x \in F\})=0$.
Q is a q-asymptote of F
$Q \times\{0\}$ is asymptotic to $\operatorname{graph}\left(q_{\mid F}\right)$
Q is a q-asymptote of $F \Rightarrow Q$ is asymptotic to F

EXAMPLE.
$F:=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$
$Q:=\left\{(x, y) \in \mathbb{R}^{2}: q(x, y):=x y+1=0\right\}$
Q is asymptotic to F.

$$
q(x, y) \geq 1 \text { for every }(x, y) \in F
$$

$\operatorname{dist}(Q \times\{0\},\{((x, y), q(x, y)):(x, y) \in F\}) \geq 1$
Q is not a q-asymptote of F.

THEOREM.
A convex set F is FW
if and only if
it has no q-asymptotes.
F, Q be closed sets, $F \cap Q=\emptyset$ and $\operatorname{dist}(F, Q)=0$ Q^{\prime} closed set.
Q^{\prime} is squeezed in between F and Q if:
$F \cap Q^{\prime}=\emptyset=Q \cap Q^{\prime}$
and for every $x \in F$ and $y \in Q$ one has $[x, y] \cap Q^{\prime} \neq \emptyset$.
$Q_{\alpha}:=\left\{x \in \mathbb{R}^{n}: q(x)-\alpha=0\right\}$

PROPOSITION.

Let F be a closed convex set.
Then Q_{0} is a q-asymptote of F
if and only if
Q_{0} is asymptotic to F and no Q_{α} can be squeezed in between F and Q.

PROPOSITION.

Let F be a closed convex set in \mathbb{R}^{n}.
Let $Q:=\left\{x \in \mathbb{R}^{n}: q(x)=0\right\}$ be a quadric.
Suppose Q degenerates to an affine subspace.
Then Q is a q-asymptote of F
if and only if
it is an f -asymptote of F.
Moreover, for any f -asymptote M of F there exists a quadric representation

$$
M:=\left\{x \in \mathbb{R}^{n}: q(x)=0\right\},
$$

and then M is also a q-asymptote of F.

PROOF.
$M:=\left\{x \in \mathbb{R}^{n}: A x-b=0\right\}$ f-asymptote of F
$Q_{\alpha}:=\left\{x:\|A x-b\|^{2}-\alpha=0\right\}$
$Q_{0}=M$

Suppose Q_{α} can be squeezed in between Q_{0} and F. $\alpha>0$
$F \subset\left\{x:\|A x-b\|^{2}>\alpha\right\}$

For $x \in F$ and $y \in M$ one has

$$
\begin{aligned}
\alpha^{\frac{1}{2}} & <\|A x-b\|=\|A x-A y\|=\|A(x-y)\| \\
& \leq\|A\|\|x-y\| \\
\|x-y\| & >\frac{\alpha^{\frac{1}{2}}}{\|A\|}
\end{aligned}
$$

$\operatorname{dist}(M, F) \geq \frac{\alpha^{\frac{1}{2}}}{\|A\|}>0$, contradiction

