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Moduli of regularity and rates of convergence for Fejér monotone sequences

Introduction

Many problems in applied mathematics can be brought into the following format:

Let (X,d) be a metric space and F : X→ R be a function: find a zero z ∈ X of F.

1 Find a fixed point of a seflmapping,

2 Find a zero of an operator,

3 Find a minimizer of a real-valued function.
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Rate of convergence for approximate sequence

1 Numerical methods, e.g. based on suitable iterative techniques, usually yield
sequences (xn) in X of approximate zeros, i.e. |F(xn)|< 1/n.

2 Based on extra assumptions (e.g. the compactness of X, the Fejér monotonicity of (xn)
and the continuity of F) one then shows that (xn) converges to an actual zero z of F.

An obvious question then concerns the speed of the convergence of (xn) towards z and
whether there is an effective rate of convergence.
(i) if the zero for F is unique it usually is possible to give an explicit effective rate of

convergence,

(ii) if F has many zeros, one usually can use the non-uniqueness to define a (computable)
function F for which (xn) does not have a computable rate of convergence.
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Modulus of uniqueness

Even though sometimes left implicit, the effectivity of iterative procedures in the case of
unique zeros rests on the existence of an effective so-called modulus of uniqueness:

Definition 1 (Kohlenbach).

Let (X,d) be a metric space, F : X→ R with zer F = {z} and r > 0. We say that
φ : (0,∞)→ (0,∞) is a modulus of uniqueness for F w.r.t. zer F and B(z,r) if for all ε > 0
and x ∈ B(z,r) we have the following implication

|F(x)|< φ(ε) ⇒ d(x,z)< ε.

Suppose now that (xn) is a sequence of (1/n)-approximate zeros contained in B(z,r) for
some r > 0. If φ is a modulus of uniqueness for F w.r.t. zer F and B(z,r), then

∀k ≥ d1/φ(ε)e(d(xk,z)< ε).
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Modulus of regularity

Definition 2.

Let (X,d) be a metric space and F : X→ R with zer F 6= /0. Fixing p ∈ zer F and r > 0, we
say that φ : (0,∞)→ (0,∞) is a modulus of regularity for F w.r.t. zer F and B(p,r) if for all
ε > 0 and x ∈ B(p,r) we have the following implication

|F(x)|< φ(ε) ⇒ dist(x,zer F)< ε.

If there exists p ∈ zer F such that φ : (0,∞)→ (0,∞) is a modulus of regularity for F w.r.t.
zer F and B(p,r) for any r > 0, then φ is said to be a modulus of regularity for F w.r.t.
zer F.

Proposition 3.

If X is proper and F is continuous, then for any p ∈ zer F and r > 0, F has a modulus of
regularity w.r.t. zer F and B(p,r).
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Modulus of regularity

While the concept of a modulus of regularity and Proposition 3 had been used in various
special situations in

R.M. ANDERSON, ‘Almost’ implies ‘Near’, TRANS. AMER. MATH. SOC. 296 (1986),
229–237,

we develop it in this talk as a general tool towards a unified treatment of a number of
concepts studied in convex optimization and fixed point theory such as metric
subregularity, Hölder regularity, weak sharp minima etc. which can be seen as instances of
the concept of regularity w.r.t. zer F for suitable choices of F.
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Fixed point

For nonempty, closed and convex subsets C1,C2 ⊆ Rn consider

T := RNC2
RNC1

,

where RNC = 2PC−1 is the reflected resolvent.

Borwein-Li-Tam have shown that if C1,C2 are convex semialgebraic sets with
O ∈ C1∩C2 which can be described by polynomials on Rn of degree d > 1, then (in our
terminology), given r > 0, T admits the following modulus of regularity w.r.t. Fix T and
B(O,r)

φ(ε) := 2(ε/µ)γ ,

for suitable µ > 0 and γ ≥ 1 depending on r and d.
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Zeros of set valued operators

Let X be a Banach spaces, X∗ its dual and J : X→ 2X∗ the normalized duality mapping.

An operator A : D⊂ X→ 2X \ /0 is called ψ-strongly accretive, where ψ : [0,∞)→ [0,∞) is
an increasing function with ψ(0) = 0, if

〈x∗− y∗,x− y〉+ ≥ ψ(‖x− y‖)‖x− y‖, (1)

for all x,y ∈ X, x∗ ∈ A(x), y∗ ∈ A(y), where 〈v,u〉+ = max{j(v) : j ∈ J(u)}.

Assume that zer A 6= /0 (hence it is a singleton) and let x ∈ X,x /∈ zer A. Taking in (1)
y ∈ zer A, we obtain

‖x∗‖ ≥ 〈x
∗,x− y〉+
‖x− y‖

≥ ψ(‖x− y‖),

for all x∗ ∈ A(x). Then it is clear that φ : (0,∞)→ (0,∞), φ(ε) := ψ(ε) is a modulus of
regularity for A w.r.t. zer A.



Moduli of regularity and rates of convergence for Fejér monotone sequences

Zeros of set valued operators

Let X be a Banach spaces, X∗ its dual and J : X→ 2X∗ the normalized duality mapping.

An operator A : D⊂ X→ 2X \ /0 is called ψ-strongly accretive, where ψ : [0,∞)→ [0,∞) is
an increasing function with ψ(0) = 0, if

〈x∗− y∗,x− y〉+ ≥ ψ(‖x− y‖)‖x− y‖, (1)

for all x,y ∈ X, x∗ ∈ A(x), y∗ ∈ A(y), where 〈v,u〉+ = max{j(v) : j ∈ J(u)}.

Assume that zer A 6= /0 (hence it is a singleton) and let x ∈ X,x /∈ zer A. Taking in (1)
y ∈ zer A, we obtain

‖x∗‖ ≥ 〈x
∗,x− y〉+
‖x− y‖

≥ ψ(‖x− y‖),

for all x∗ ∈ A(x). Then it is clear that φ : (0,∞)→ (0,∞), φ(ε) := ψ(ε) is a modulus of
regularity for A w.r.t. zer A.



Moduli of regularity and rates of convergence for Fejér monotone sequences

Zeros of set valued operators

Let X be a Banach spaces, X∗ its dual and J : X→ 2X∗ the normalized duality mapping.

An operator A : D⊂ X→ 2X \ /0 is called ψ-strongly accretive, where ψ : [0,∞)→ [0,∞) is
an increasing function with ψ(0) = 0, if

〈x∗− y∗,x− y〉+ ≥ ψ(‖x− y‖)‖x− y‖, (1)

for all x,y ∈ X, x∗ ∈ A(x), y∗ ∈ A(y), where 〈v,u〉+ = max{j(v) : j ∈ J(u)}.

Assume that zer A 6= /0 (hence it is a singleton) and let x ∈ X,x /∈ zer A. Taking in (1)
y ∈ zer A, we obtain

‖x∗‖ ≥ 〈x
∗,x− y〉+
‖x− y‖

≥ ψ(‖x− y‖),

for all x∗ ∈ A(x). Then it is clear that φ : (0,∞)→ (0,∞), φ(ε) := ψ(ε) is a modulus of
regularity for A w.r.t. zer A.



Moduli of regularity and rates of convergence for Fejér monotone sequences

Minimization problems

Let (X,d) metric space and f : X→ (−∞,∞]. Suppose that set of solutions S of the
associated minimization problem is nonempty and denote m = minx∈X f (x).

The set S is called a set of ψ-boundedly weak sharp minima for f , that is, for any bounded
set C ⊆ X with C∩S 6= /0, there exists an increasing function ψ = ψC : [0,∞)→ [0,∞)
satisfying ψ(0) = 0 such that

f (x)≥ m+ψC(dist(x,S)), (2)

holds for all x ∈ C.
Fixing p ∈ S and r > 0, a modulus of regularity for f w.r.t. S and B(p,r) can be defined by
φ : (0,∞)→ (0,∞), φ(ε) := ψC(ε), where C = B(p,r).

The case ψC(ε) = αε with α > 0, was introduced by Burke-Ferris.
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Quantitative version

Let H be a Hilbert space and f : H→ (−∞,∞] a proper, convex and lower semi-continuous
function which attains its minimum. Take p ∈ argmin f and r,r′ > 0. Consider the
following statements:

1. The function f admits a modulus of regularity w.r.t. argmin f and B(p,r).

2. For γ > 0, the resolvent of f , Jγ∂ f , admits a modulus of regularity w.r.t. Fix Jγ∂ f and
B(p,r).

3. The subdifferential of f , ∂ f , admits a modulus of regularity w.r.t. zer ∂ f and B(p,r′).

The following theorem can be considered a quantitative version of the following well
known fact:

argmin f = zer ∂ f = Fix Jγ∂ f .
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Quantitative version

Theorem 4.

(i) If f |B(p,r+1) is additionally uniformly continuous admitting a modulus of uniform
continuity, then 1 implies 2 for all γ > 0.If φ is a modulus of regularity for f w.r.t.
argmin f and B(p,r), and ρ is a modulus of uniform continuity for f |B(p,r+1), then

φ
∗(ε) = min

{
ρ

(
φ(ε)

2

)
,

γφ(ε)

2(r+1)
,1
}

is a modulus of regularity for Jγ∂ f w.r.t. Fix Jγ∂ f and B(p,r).

(ii) If there exists γ > 0 such that 2 holds, then 1 is satisfied. Moreover 3 holds too if
r′ < r.

(iii) If ∂ f is single-valued, r′ = r and (Id+ γ∂ f )|B(p,r+1), γ > 0, is uniformly continuous
admitting a modulus of uniform continuity, then 3 implies 2.
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Rates of convergence

Theorem 5.

Let (X,d) be a metric space and F : X→ R with zer F 6= /0. Suppose that (xn) is a sequence
in X which is Fejér monotone w.r.t. zer F, b > 0 is an upper bound on d(x0,p) for some
p ∈ zer F and there exists α : (0,∞)→ N such that

∀ε > 0∃n≤ α(ε) (|F(xn)|< ε) .

If φ is a modulus of regularity for F w.r.t. zer F and B(p,b), then (xn) is a Cauchy
sequence with Cauchy modulus

∀ε > 0∀n, ñ≥ α(φ(ε/2)) (d(xn,xñ)< ε) (3)

and
∀ε > 0∀n≥ α(φ(ε)) (dist(xn,zer F)< ε) . (4)

In particular, if X is complete and zer F is closed, then (xn) converges to some z ∈ zer F
with a rate of convergence α(φ(ε/2)).
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∀ε > 0∀n, ñ≥ α(φ(ε/2)) (d(xn,xñ)< ε) (3)
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Algorithms

1 Picard: Minimizing the distance between two nonintersecting sets in CAT(0) spaces

2 Cyclic: CFP.

3 Mann: Finding a zero of the sum of two monotone operators.

4 Proximal point: Finding a minimizer of a convex function.
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Picard iteration

Let X be a complete metric space and T : X→ X a nonexpansive mapping with Fix T 6= /0.
The Picard iteration generates starting from x0 ∈ X the sequence given by

xn+1 = Tnx for any n≥ 0. (5)

It is well-known that (xn) is Fejér monotone w.r.t. Fix T . Moreover, Fix T is closed .
Let b > 0 be an upper bound on d(x0,p) for some p ∈ Fix T . By Fejér monotonicity,
(xn)⊆ B(p,b). Considering F : X→ R,F(x) = d(x,Tx), if φ is a modulus of regularity for
F w.r.t. zer F and B(p,b), and α is a rate of asymptotic regularity for (xn), then, applying
Theorem 5, we can deduce that (xn) converges to a fixed point of T with a rate of
convergence α(φ(ε/2)).
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Distance between two sets

Let X is a complete CAT(0) space and U,V ⊆ X are nonempty, closed and convex with
U∩V = /0, then one aims to find best approximation pairs (u,v) ∈ U×V such that
d(u,v) = dist(U,V). This problem was studied in Hilbert spaces by Bauschke and
Borwein.
Denote ρ = dist(U,V) and suppose that S = {(u,v) ∈ U×V : d(u,v) = ρ} 6= /0. Given
x0 ∈ X, we consider the sequence (xn) given by (5), where T : H→ H, T = PU ◦PV .

T is nonexpansive.

If (u,v) ∈ S, then u ∈ Fix T , so Fix T 6= /0. At the same time, if u ∈ Fix T , then
(u,PVu) ∈ S.

(xn) is asymptotically regular with a rate of asymptotic regularity

α(ε) =

[
ρ2 +b2

ε2

]
+1,

were b an upper bound on d(x0,p) for some fixed p ∈ Fix T .
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Distance between two sets

Assume that the sets U and V are additionally boundedly regular which means that for any
bounded set K ⊆ X and any ε > 0 there exists δ > 0 such that for all x ∈ K we have the
following implication

dist(x,U)< δ ∧dist(x,V)< ρ +δ ⇒ dist(x,Fix T)< ε. (6)

Let ε > 0 and consider K = B(p,b). Since U,V are boundedly regular, there exists
δ = δ (ε)> 0 such that (6) holds for x ∈ K. Then

φ(ε) =
ρδ

b+ρ
,

is a modulus of regularity for T . w.r.t. Fix T and K.
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Proximal point algorithm

Let H be a Hilbert space and A : D⊂ H→ 2H a maximal monotone operator with
zer A 6= /0. Note that zer A is closed. Given x0 ∈H and a sequence of positive numbers (γn),
the proximal point algorithm (PPA) generates the sequence defined by

xn+1 = JγnAxn. (7)

It is well-known that (xn) is Fejer monotone w.r.t. zer A.
Denoting F : D→ R, F(x) = dist(O,A(x)) and un =

xn−xn+1
γn

, we have F(xn+1)≤ ‖un‖ for
all n ∈ N.
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Proximal point algorithm

Take b > 0 an upper bound of ‖x0−p‖ for some p ∈ zer A. If ∑
∞
n=0 γ2

n = ∞ with a rate of
divergence θ , then,

θ

(⌈
b2

ε2

⌉)
is a rate of convergence of (‖un‖) towards 0. Therefore,

∀ε > 0∀n≥ θ

(⌈
b2

ε2

⌉)
+1 (F(xn)≤ ε)

and so ∀ε > 0
(
F(xα(ε))< ε

)
, where α(ε) = θ

(⌈
2b2

ε2

⌉)
+1.

Thus, if φ is a modulus of regularity for A w.r.t. zer A and B(p,b), then (xn) converges to
some z ∈ zer A with a rate of convergence α(φ(ε/2,b)).
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Proximal point algorithm

Let f : H→ (−∞,∞] be a proper, convex and uniformly continuous function with a
modulus of uniform continuity ρ and S = argmin f 6= /0.
If S is a set of ψ-boundedly global weak sharp minima for f , then φ ∗ : (0,∞)→ (0,∞),
φ ∗(ε) = ψC(ε), where C = B(p,b+1), is a modulus of regularity for f w.r.t. S and
B(p,b+1) .
Applying Theorem 4 one obtains that φ : (0,∞)→ (0,∞),

φ(ε) = min
{

ρ

(
ψC(ε/2)

2

)
,
ψC(ε/2)
2(b+2)

,
ε

2
,1
}

is a modulus of regularity for ∂ f w.r.t. zer ∂ f and B(p,b).
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