Hierarchical Convex Optimization with Proximal Splitting Operators

Isao Yamada Tokyo Institute of Technology

Based on joint work with Masao Yamagishi

Dedicated to the memory of Jonathan M. Borwein

Splitting Algorithms, Modern Operator Theory, & Applications September 19, 2017, Casa Matemática Oaxaca

Convex Optimization - A typical form :

 $(\mathcal{X}, \langle \cdot, \cdot \rangle_{\mathcal{X}}, \|\cdot\|_{\mathcal{X}}), (\mathcal{K}, \langle \cdot, \cdot \rangle_{\mathcal{K}}, \|\cdot\|_{\mathcal{K}}):$ Real Hilbert Spaces $f \in \Gamma_0(\mathcal{X}), g \in \Gamma_0(\mathcal{K}), A: \mathcal{X} \to \mathcal{K}:$ Bdd linear

(P) minimize
$$f(x) + g(Ax)$$

 $x \in \mathcal{X}$

has been playing a central role in Inverse Problems because

$$f \in \Gamma_0(\mathcal{X}), \ g_i \in \Gamma_0(\mathcal{K}_i), \ A_i : \mathcal{X} \to \mathcal{K}_i: \text{ Bdd linear}$$

(Q) minimize $f(x) + \sum_{i=1}^M g_i(A_i x)$

can be handled as an instance of (P) by

$$\mathcal{K} := \mathcal{K}_1 \times \cdots \times \mathcal{K}_M, \ g := \bigoplus_{i=1}^m g_i \text{ and } Ax := (A_1 x, \dots, A_M x)$$

But

Almost all existing algorithms achieve convergence to only one unspecial solution : $x^{\star} \in \mathcal{S}_p := \arg\min_{x \in \mathcal{X}} f(x) + \overline{g(Ax)} \neq \emptyset.$ Other solutions in $\mathcal{S}_p \setminus \{x^*\}$ remain mistery ! Imagine, e.g., convex feasibility problems !

Challenges for strategic convergence are found, e.g,

Better limit

Superiorization:

[Censor-Davidi-Herman '10], [Herman-Garduno-Davidi-Censor '12] An idea to incorporate a faborable attribute into a given iterative algorithm, without changing

the inherent desired properties of the algorithm.

We are trying to find Best limit : Hierarchical convex optimization : [Yamada-Ogura-Shirakawa '02], [Yamada-Yukawa-Yamagishi '11], [Ono-Yamada '15], [Yamagishi-Yamada '17]

Best limit in what sense? Hierarchical Convex Optimization Suppose $S_p := \arg\min_{x \in \mathcal{X}} f(x) + g(Ax) \neq \emptyset$ & $\Psi\in\Gamma_0(\mathcal{X})$ is desired to be minimized additionally, i.e., Minimize $\Psi(x^{\star})$ 2nd stage optimization The set of all solutions of Subject to $x^{\star} \in \mathcal{S}_{p}$ 1st stage optimization For this challenging mission impossible, we need at least 1. Exploiting **Full information** on \mathcal{S}_{p} (usually infinite set in \mathcal{X}). 2. Mathematically sound algorithmic ideas to minimize Ψ over \mathcal{S}_p .

Hierarchical convex optimization casts a question: Can we choose a best one without crunching all cookies ? \mathcal{S}_p

PART I Preliminaries :

How can we capture full information on the solution set of Convex Optimization Problem ?

PART II

Hierarchical Convex Optimization :

How can we choose a Best Fortune Cookie

without crunching all cookies ?

PART III

Application to State-of-the-art Statistiacal Estimation Technique A Hierarchical Enhancement of Lasso

Convex Optimization Problem defined on a Real Hilbert Space χ Minimize $\varphi: \mathcal{X} \to (-\infty, \infty)$ where $\varphi \in \Gamma_0(\mathcal{X})$ $\operatorname{dom}\varphi := \{x \in \mathcal{X} \mid \varphi(x) < \infty\} \neq \emptyset$ Proper $(\forall \alpha \in \mathbb{R}) \ \operatorname{lev}_{<\alpha}(\varphi) := \{ x \in \mathcal{X} \mid \varphi(x) \le \alpha \}$ Lower Semiis Closed in ${\mathcal X}$ continuous $(\forall x, y \in \operatorname{dom}\varphi, \forall \lambda \in (0, 1))$ Convex $\varphi(\lambda x + (1 - \lambda)y) \le \lambda\varphi(x) + (1 - \lambda)\varphi(y)$

The solution sets of convex optimization problems can often be expressed as

$$\arg\min_{x\in\mathcal{X}}\varphi(x)=\Xi\left(\operatorname{Fix}(T)\right)$$

where

$T: \mathcal{H} \to \mathcal{H}: \text{ a$ **nonexpansive operator** $}$ defined on a certain Hilbert space \mathcal{H}

i.e.
$$||T(x) - T(y)|| \le ||x - y||$$
 $(\forall x, y \in \mathcal{H})$

 $\Xi: \mathcal{H} \to 2^{\mathcal{X}}:$ a certain set-valued operator

Computable Nonexpansive Operators for Convex Optimization

Proximity Operator (J.J.Moreau '62) $f \in \Gamma_0(\mathcal{X})$

$$\operatorname{prox}_{f} : \mathcal{X} \to \mathcal{X} : x \mapsto \arg\min_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2} \|x - y\|^{2} \right\}$$

is 1/2- averaged nonexpansive operator, i.e.,

 $\operatorname{rprox}_f := 2\operatorname{prox}_f - \operatorname{Id}$ is nonexpansive.

$$\begin{aligned} z \in \arg\min_{x \in \mathcal{X}} f(x) & \text{Subdifferential of } f \text{ at } z \\ \Leftrightarrow & 0 \in \partial f(z) := \{ p \in \mathcal{X} \mid f(z) + \langle p, x - z \rangle \leq f(x) \; (\forall x \in \mathcal{X}) \} \in 2^{\mathcal{X}} \\ \Leftrightarrow & z \in z + \partial f(z) = (\text{Id} + \partial f) \; (z) \in 2^{\mathcal{X}} & \text{Proximity operator of } f \\ \Leftrightarrow & z = (\text{Id} + \partial f)^{-1} \; (z) = \text{prox}_f(z) \\ \Leftrightarrow & z \in \text{Fix} \; (\text{prox}_f) & \text{Resolvent of } \partial f \end{aligned}$$

Proximity Operator of Conjugate function

$$\forall f \in \Gamma_0(\mathcal{X}), \ f^* : \mathcal{X} \ni y \mapsto \sup_{x \in \mathcal{X}} (\langle y, x \rangle - f(x)) \in (-\infty, \infty]$$

is called Fen

Fenchel-Rockafellar Conjugate of f

and satisfies $f^* \in \Gamma_0(\mathcal{X})$ &

Inverse Resolvent Identity

$$\mathrm{Id} = \mathrm{prox}_f + \mathrm{prox}_{f^*}$$

If $f \in \Gamma_0(\mathcal{X})$ is **prox-friendly** (i.e., prox_f is easily computable), $f^* \in \Gamma_0(\mathcal{X})$ is also **prox-friendly**.

Most splitting algorithms more or less rely on ... Fact (Krasnosel'skii-Mann, e.g. [Mann'53, Dotson'70, Groetsch'72]) Suppose $T: \mathcal{H} \to \mathcal{H}$ is $\begin{cases} \text{Nonexpansive} \\ \operatorname{Fix}(T) \neq \emptyset \end{cases}$ Then for any $\begin{cases} \forall x_0 \in \mathcal{H} \\ (\alpha_n)_{n=0}^{\infty} \in (0,1) \text{ s.t. } \sum_{n=0}^{\infty} \alpha_n (1-\alpha_n) = \infty \end{cases}$ $\boldsymbol{x}_{n+1} := (1 - \alpha_n) \boldsymbol{x}_n + \alpha_n T(\boldsymbol{x}_n) \rightharpoonup \exists \hat{\boldsymbol{x}} \in \operatorname{Fix}(T)$

In fact, after careful observations, we can interpret **Proximal Splitting Algorithms** (Forward backward splitting/Primal-dual splitting/ Douglus -Rachford splitting / ADMM etc)

as applications of K-M Alg to

$$\arg\min_{x\in\mathcal{X}}f(x) + g(Ax) = \Xi\left(\operatorname{Fix}(T)\right)$$

where

 $T: \mathcal{H} \to \mathcal{H}:$ a computable nonexpansive operator defined on a certain Hilbert space \mathcal{H} $\Xi: \mathcal{H} \to 2^{\mathcal{X}}:$ a certain set-valued operator

Example (ADMM e.g. [Gabay '83])) $(\mathcal{X}, \langle \cdot, \cdot \rangle, \|\cdot\|), (\mathcal{K}, \langle \cdot, \cdot \rangle_{\mathcal{K}}, \|\cdot\|_{\mathcal{K}}):$ Real Hilbert Spaces $f \in \Gamma_0(\mathcal{X}), \ g \in \Gamma_0(\mathcal{K}), \ A: \mathcal{X} \to \mathcal{K}:$ Bdd linear

(P) minimize
$$f(x) + g(Ax)$$

 $x \in \mathcal{X}$

$$\begin{pmatrix} x_{k+1} \in \arg\min_{x \in \mathcal{X}} \left(f(x) + \frac{1}{2} \|Ax - y_k - \nu_k\|_{\mathcal{K}}^2 \right) \\ y_{k+1} \in \arg\min_{y \in \mathcal{K}} \left(g(y) + \frac{1}{2} \|Ax_{k+1} - y - \nu_k\|_{\mathcal{K}}^2 \right) \\ \nu_{k+1} = \nu_k - Ax_{k+1} + y_{k+1} \end{cases}$$

A Fixed Point Theoretic View of ADMM [Eckstein-Bertsekas'92] $(\mathcal{X}, \langle \cdot, \cdot \rangle_{\mathcal{X}}, \|\cdot\|_{\mathcal{X}}), (\mathcal{K}, \langle \cdot, \cdot \rangle_{\mathcal{K}}, \|\cdot\|_{\mathcal{K}}): \text{ Real Hilbert Spaces}$

 $f \in \Gamma_0(\mathcal{X}), \ g \in \Gamma_0(\mathcal{K}), \ A : \mathcal{X} \to \mathcal{K}$: Bdd linear

P) minimize
$$f(x) + g(Ax)$$

 $x \in \mathcal{X}$

(D) minimize
$$f^*(A^*u) + g^*(-u)$$

$$\theta_{1} := f^{*} \circ A^{*}, \ \theta_{2} := g^{*} \circ (-\mathrm{Id})$$

$$\mathcal{S}_{d} := \arg\min_{\nu \in \mathcal{K}} f^{*}(A^{*}\nu) + g^{*}(-\nu) = \operatorname{prox}_{\theta_{2}} \left(\operatorname{Fix} \left(\operatorname{rprox}_{\theta_{1}}\operatorname{rprox}_{\theta_{2}}\right)\right)$$

$$\mathcal{S}_{p} := \arg\min_{x \in \mathcal{X}} f(x) + g(Ax) = \partial f^{*}(A^{*}\nu^{*}) \cap A^{-1} \left(\partial g^{*}(-\nu^{*})\right) \quad (\forall \nu^{*} \in \mathcal{S}_{d})$$

ADMM = K-M alg for a point in $Fix(rprox_{\theta_1} rprox_{\theta_2})$

PART I

Preliminaries :

How can we capture full information on the solution set of Convex Optimization Problem ?

PART II

Hierarchical Convex Optimization :

How can we choose a Best Fortune Cookie

without crunching all cookies ?

PART III

Application to State-of-the-art Statistiacal Estimation Technique A Hierarchical Enhancement of Lasso

We have seen the solution sets of convex optimization problems can often be expressed as

$$\arg\min_{x\in\mathcal{X}} f(x) + g(Ax) = \Xi\left(\operatorname{Fix}(T)\right)$$

 $T: \mathcal{H} \to \mathcal{H}: \text{ a computable nonexpansive operator} \\ \text{defined on a certain Hilbert space } \mathcal{H}$

 $\Xi: \mathcal{H} \to 2^{\mathcal{X}}:$ a certain set-valued operator

Can we choose best one without crunching all cookies?

 $\operatorname{Fix}(T)$

A Key for Hierarchical Convex Optimization

Hybrid Steepest Descent Method

[Yamada et al '96, Deutsch-Yamada'98, Yamada'01, Yamada-Ogura'04 etc]

$$x_{n+1} := T(x_n) - \lambda_{n+1} \nabla \Psi(T(x_n))$$

can minimize ψ over

$$\operatorname{Fix}(T) := \{ \boldsymbol{x} \in \mathcal{H} \mid T(\boldsymbol{x}) = \boldsymbol{x} \}$$

where

 $\begin{cases} \Psi: \mathcal{H} \to \mathbb{R}, & \text{Smooth Convex Fu}\\ \nabla \Psi: \mathcal{H} \to \mathcal{H}, & \text{Lipschitz Continuous}\\ T: \mathcal{H} \to \mathcal{H}, & \text{Nonexpansive operat}\\ (\lambda_n)_{n=1}^{\infty} \subset [0, \infty): & \text{Slowly decreasing} \end{cases}$

Smooth Convex Function Nonexpansive operator

1. This is extension of [Halpern'67/Reich'74/Lions'77/Wittmann'92/...]. 2. This can select a very best solution among all fixed points !

Theorem (Convergence of HSDM, see, e.g. [Yamada'01])

 $T: \mathcal{H} \to \mathcal{H} \quad \text{Nonexpansive with } \operatorname{Fix}(T) \neq \emptyset$ $\Psi: \mathcal{H} \to \mathbb{R} \quad \text{Gâteaux differentiable s.t.}$ $(\exists \kappa, \eta > 0, \forall x, y \in T(\mathcal{H})) \quad \|\nabla \Psi(x) - \nabla \Psi(y)\| \leq \kappa \|x - y\|$

$$\langle \nabla \Psi(x) - \nabla \Psi(y), x - y \rangle \ge \eta \|x - y\|^2$$

$$(\lambda_n)_{n \ge 1} \subset [0, \infty) \text{ satisfies } \begin{cases} (i) & \lim_{n \to \infty} \lambda_n = 0 \\ (ii) & \sum_{n \ge 1} \lambda_n = \infty \\ (iii) & \sum_{n \ge 1} |\lambda_n - \lambda_{n+1}| < \infty \end{cases}$$

$$\begin{array}{l} (\forall x_0 \in \mathcal{H}) \quad x_{n+1} \coloneqq T(x_n) - \lambda_{n+1} \nabla \Psi(T(x_n)) \\ \text{satisfies} \quad \lim_{n \to \infty} \|x_n - x^{\star \star}\| = 0 \\ \text{where } x^{\star \star} \in \Omega \coloneqq \arg\min_{x \in \operatorname{Fix}(T)} \Psi(x) \qquad (\operatorname{Note:} |\Omega| = 1) \end{array}$$

Theorem (nonstrictly convex, $\dim(\mathcal{H}) < \infty$ [Ogura-Yamada'03])

Suppose

- $T: \mathcal{H} \to \mathcal{H}$ Nonexpansive with bounded $\operatorname{Fix}(T) \neq \emptyset$
- $\Psi: \mathcal{H} \to \mathbb{R}$ Smooth Convex function, s.t.
 - $(\exists \kappa > 0, \forall x, y \in T(\mathcal{H})) \quad \|\nabla \Psi(x) \nabla \Psi(y)\| \le \kappa \|x y\|$

$$(\lambda_n)_{n\geq 0} \in \ell^2_+ \setminus \ell^1_+.$$

How can we combine Nonexpansive Operators with Hybrid Steepest Descent Method for Hierarchical Convex Optimization ?

—We have found many ways ! See for example—

[Yamada-Ogura-Shirakawa '02],[Yamada-Yukawa-Yamagishi '11], [Ono-Yamada '15], [Yamagishi-Yamada '17]

Next we demonstrate a simple strategy in an application to statistical estimation problem !

PART I

Preliminaries :

How can we capture full information on the solution set of Convex Optimization Problem ?

PART II

Hierarchical Convex Optimization :

How can we choose a Best Fortune Cookie

without crunching all cookies ?

PART III

Application to State-of-the-art Statistiacal Estimation Technique A Hierarchical Enhancement of Lasso

Consider the estimation of $\mathbf{b}^{tru} \in \mathbb{R}^p$ in the standard linear model:

$$\mathbf{z} = \mathbf{X}\mathbf{b}^{\mathrm{tru}} + \sigma\mathbf{e}$$

where

 $\mathbf{z} = (z_1, z_2, \dots, z_n)^t \in \mathbb{R}^n$

Response vector

Design matrix

Noise vector

$$\mathbf{X} \in \mathbb{R}^{n \times p}$$
 ($p > n$ for High-dimensional case)
: assumed to have no zero column vector !

$$\mathbf{e} = (\varepsilon_1, \dots, \varepsilon_n)^t \in \mathbb{R}^n$$

 ε_i : realization of normalized random variable with mean 0 and variance 1

Standard Deviation of Entire noise

$$\sigma > 0$$

$$\begin{split} & \textbf{Lasso} \; [\textbf{Robert Tibshirani '96]} \\ & \widehat{\mathbf{b}}_{\text{Lasso}}(\lambda) \in \arg\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \| \mathbf{z} - \mathbf{X} \mathbf{b} \|_2^2 + \lambda \| \mathbf{b} \|_1 \right\}. \\ & \textbf{A Prediction Bound for Lasso} \\ & \textbf{[Koltchinskii, Lounici, and Tsybakov'11], [Rigollet and Tsybakov'11]} \\ & \text{If } \lambda \geq \frac{2 \| \mathbf{X}^t (\mathbf{z} - \mathbf{X} \mathbf{b}^{\text{tru}}) \|_{\infty}}{n}, \\ & \text{it holds} \; \frac{\| \mathbf{X} \widehat{\mathbf{b}}_{\text{Lasso}}(\lambda) - \mathbf{X} \mathbf{b}^{\text{tru}} \|_2^2}{n} \leq 2\lambda \| \mathbf{b}^{\text{tru}} \|_1. \end{split}$$

j th convex subproblem of TREX [Bien, Gaynanova, Lederer, and Müller '16]

$$\widehat{\mathbf{b}}_{\text{TREX}}^{(j)} \in \underset{\mathbf{b} \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ \frac{\|\mathbf{X}\mathbf{b} - \mathbf{z}\|_{2}^{2}}{\alpha \mathbf{x}_{j}^{t}(\mathbf{X}\mathbf{b} - \mathbf{z})} + \|\mathbf{b}\|_{1} \right\}$$
$$\mathbf{x}_{j}^{t}(\mathbf{X}\mathbf{b} - \mathbf{z}) > 0$$

A Reformulation for Proximal Splitting [Combettes, Müller '17]

$$\widehat{\mathbf{b}}_{p\text{TREX}}^{(j)} \in \mathcal{S}_{j} := \underset{\mathbf{b} \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ g_{j}(\mathbf{M}_{j}\mathbf{b}) + \|\mathbf{b}\|_{1} \right\},$$

Great News 2

$$g_{j} : \mathbb{R} \times \mathbb{R}^{n} \to (-\infty, \infty] : (\eta, \mathbf{y}) \mapsto \begin{cases} \frac{\|\mathbf{y} - \mathbf{z}\|_{2}^{2}}{\alpha(\eta - \mathbf{x}_{j}^{t}\mathbf{z})}, & \text{if } \eta > \mathbf{x}_{j}^{t}\mathbf{z}; \\ 0, & \text{if } \mathbf{y} = \mathbf{z} \text{ and } \eta = \mathbf{x}_{j}^{t}\mathbf{z}; \\ +\infty, & \text{otherwise.} \end{cases}$$

$$\in \Gamma_{0} \left(\mathbb{R} \times \mathbb{R}^{n}\right) : \text{ proper lower-semicontinuous convex,}$$

$$\operatorname{prox}_{g_{j}} := \left(\operatorname{Id} + \partial g_{j}\right)^{-1} : \text{has a closed form expression,} \\ \mathbf{M}_{j} : \mathbb{R}^{p} \to \mathbb{R} \times \mathbb{R}^{n} : \mathbf{b} \mapsto \left(\mathbf{x}_{j}^{t}\mathbf{X}\mathbf{b}, \mathbf{X}\mathbf{b}\right) : \text{Bounded Linear}$$

Product Space Reform. TREX subproblem [Combettes, Müller '17]

$$\begin{array}{c|c} \underset{\mathbf{b} \in \mathbb{R}^{p}}{\operatorname{minimize}} & g_{j}(\mathbf{M}_{j}\mathbf{b}) + \|\mathbf{b}\|_{1} & \operatorname{Convex Optimization over } \mathbb{R}^{p} \\ \hline \\ & \underset{\mathbf{x} = (\mathbf{b}, \mathbf{c}) \in \mathbb{R}^{p} \times \mathbb{R}^{n+1}}{\operatorname{minimize}} & F_{j}(\mathbf{x}) + G_{j}(\mathbf{x}) & \operatorname{Convex Optimization over } \mathbb{R}^{p+n+1} \\ \hline \\ & F_{j} : (\mathbf{b}, \mathbf{c}) \mapsto \|\mathbf{b}\|_{1} + g_{j}(\mathbf{c}), & G_{j}(\mathbf{b}, \mathbf{c}) = \begin{cases} 0 & \text{if } \mathbf{M}_{j}\mathbf{b} = \mathbf{c}, \\ \infty & \text{otherwise} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1}}{\operatorname{minimize}} & f_{j}(\mathbf{c}), & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases} \\ & \underset{\mathbf{c} \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} \mid \mathbf{M}_{j}\mathbf{b} = \mathbf{c} \end{cases}$$

where
$$T_j := \left(2 \operatorname{prox}_{\gamma F_j} - \operatorname{Id}\right) \circ \left(2P_{\mathcal{M}_j} - \operatorname{Id}\right) : \mathbb{R}^{p+n+1} \to \mathbb{R}^{p+n+1} :$$
 Nonexpansive

A Hierarchical Convex Optimization for Enhancement of TREX For j = 1, 2, ..., 2p, -Problem (Hierarchical enhancement of Lasso for promoting Flatness) Minimize $||D\mathbf{b}^{\star}||^2$ subject to $\ddot{\mathbf{b}}^{\star} \in \ddot{\mathcal{S}}_{j}$:= argmin $\{g_{j}(\mathbf{M}_{j}\mathbf{b}) + \|\mathbf{b}\|_{1}\}$ $\left\{ (\swarrow) \\ = \mathcal{Q}_{p} \circ P_{\mathcal{M}_{j}}(\operatorname{Fix}(T_{j})), \right\}$ $D := \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$ where (Equivalent Problem for **Hybrid Steepest Descent Method**) Minimize $\Psi(\mathbf{x}^{\star}) := \| D \circ \mathcal{Q}_p \circ P_{\mathcal{M}_j}(\mathbf{x}^{\star}) \|^2 \left(\bigvee_{j \in \mathcal{M}_j} \mathcal{Q}_j \circ \mathcal{Q}_j \right) \|^2$ $\mathbf{x}^{\star} \in \operatorname{Fix}(T_i)$ subject to where $T_j := (2 \operatorname{prox}_{\gamma F_j} - \operatorname{Id}) \circ (2P_{\mathcal{M}_j} - \operatorname{Id}) : \mathbb{R}^{p+n+1} \to \mathbb{R}^{p+n+1} :$ Nonexpansive

Numerical Test (Underdetermined case)

$$\mathbf{z} = \mathbf{X}\mathbf{b}^{\text{tru}} + \sigma \mathbf{e}$$
 $(n = 20, p = 30)$
 $\mathbf{X} \in \mathbb{R}^{20 \times 30}$: generated by zero-mean Gaussian
 $|\mathbf{X}_{:i}|| = \sqrt{20} \ (i = 1, 2, \dots, 30) \text{ and } \mathbf{X}_{:2} = \mathbf{X}_{:3} = \mathbf{X}_{:4}$
 $\mathbf{b}^{\text{tru}} = \frac{1}{\sqrt{30}} (0, 0, 0, 1, 1, 1, 0, 0, \dots, 0)^{t} \in \mathbb{R}^{30}$

$$T_j := \left(2\mathrm{prox}_{F_j} - \mathrm{Id}\right) \circ \left(2P_{\mathcal{M}_j} - \mathrm{Id}\right) : \mathbb{R}^{p+n+1} \to \mathbb{R}^{p+n+1} : \text{ Nonexpansive}$$

---- K-M algorithm with Douglas-Rachford Operator $(\mathbf{b}_{k+1}, \mathbf{c}_{k+1}) := (1 - \alpha_k) (\mathbf{b}_k, \mathbf{c}_k) + \alpha_k T_j(\mathbf{b}_k, \mathbf{c}_k) \quad (\alpha_k = 1.95/2)$

Numerical Performance

$$\min_{1 \le j \le 60} \left\{ g_j(\mathbf{M}_j \mathbf{b}) + \|\mathbf{b}\|_1 \right\}$$

Conclusion

- 1. We introduced a simple strategy for Hierarchical Convex Optimization which can enhance further existing proximal splitting algorithms without losing their optimality.
- 2. The proposed strategies are based on destined mariage: Proximal splitting operators + Hybrid steepest descent method.
- 3. We have demonstrated an application to Hierarchical Enhancement of Lasso estimator.

References (Hierarchical convex optimization)

[Yamada, Yukawa, Yamagishi 2011]

I. Yamada, M. Yukawa, M. Yamagishi, "Minimizing the Moreau envelope of nonsmooth convex functions over the fixed point set of certain quasi-nonexpansive mappings," In: Fixed-point algorithms for inverse problems in science and engineering, pp.343-388, Springer, 2011.

[Yamagishi, Yamada 2017]

M. Yamagishi, I. Yamada, "Nonexpansiveness of Linearlized Augmented Lagrangian operator for hierarchical convex optimization," Inverse Problems, 2017.