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Convex Optimization - A typical form : 

has been playing a central role in Inverse Problems 
because 

 can be handled as an instance of  (P) by 





Results are 
VERY 

DIFFERENT



Look same, but 
actually 

VERY DIFFERENT

This situation is  
similar to Fortune Cookie !



                          Superiorization:
      [Censor-Davidi-Herman '10], [Herman-Garduno-Davidi-Censor '12]

   An idea to incorporate a faborable attribute into 
      a given iterative algorithm, without changing 

   the inherent desired properties of the algorithm. 

Challenges  for strategic convergence 
are found, e.g,  

Better limit  

              Hierarchical convex optimization :
[Yamada-Ogura-Shirakawa '02], [Yamada-Yukawa-Yamagishi '11],

               [Ono-Yamada '15], [Yamagishi-Yamada '17] 

We are trying to find Best limit : 



For this challenging mission impossible,  
we need at least 

  is desired to be  minimized additionally, i.e., 

Suppose

Minimize

Subject to

Hierarchical Convex Optimization

Best limit in what sense ? 



Can we choose a best one without crunching all cookies ? 

Hierarchical convex optimization casts a question: 
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is  Closed  in 

Proper

Lower 
Semi-
continuous

Convex

   Convex Optimization Problem 
defined on a Real Hilbert Space 

Minimize

 where



The solution sets  of   
convex optimization problems 

can often be expressed as  

where

i.e.



 Forward-Backward splitting operator

Metric projection

Proximity operator

ADMM Operator  (Dual Variant of 
Douglas-Rachford splitting operator)

Primal-Dual splitting Operator
Computable Nonexpansive Operators for Convex Optimization

Great ! Augmented Lagrangian Operator



Proximity Operator (J.J.Moreau '62)



 is called     Fenchel-Rockafellar Conjugate of

 and satisfies

Proximity Operator of  Conjugate function

Inverse Resolvent Identity

 & 



Most splitting algorithms 
 more or less rely on ... 

s.t.

Suppose  is
Nonexpansive

Then
for any 

Fact (Krasnosel’skii-Mann, e.g.[Mann'53,Dotson'70,Groetsch'72])



In fact, after careful observations,  we  can interpret  
Proximal Splitting Algorithms

(Forward backward splitting/Primal-dual splitting/ 
Douglus -Rachford splitting / ADMM etc)

as applications of  K-M Alg 
to   

where



Example (ADMM  e.g. [Gabay '83]) )



A Fixed Point Theoretic View of  ADMM [Eckstein-Bertsekas'92]
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We have seen the solution sets  of   
convex optimization problems 

can often be expressed as  

where



Look same, but 
actually 

VERY DIFFERENT

 K-M alg allows us to access 
only one unspecial 



Can we choose best one without 
crunching all  cookies ?



This mission 
can not be accomplishd  by K-M alg 
but could be accomplished by 
     Hybrid steepest descent method !

K-M algorithm

Hybrid Steepest Descent Method



Hybrid Steepest Descent Method
[Yamada et al '96, Deutsch-Yamada'98, Yamada'01, Yamada-Ogura'04 etc]

  can minimize     over   

where

Lipschitz Continuous

Nonexpansive operator

Slowly decreasing

Smooth Convex Function

1. This is extension of [Halpern'67/Reich'74/Lions'77/Wittmann'92/...].
2. This can select a very best solution among all fixed points !

 A Key for Hierarchical Convex Optimization



Theorem   (Convergence of HSDM,   see, e.g. [Yamada'01]) 



Nonexpansive  with bounded 

Smooth Convex function, s.t.

Theorem  (nonstrictly convex,                    [Ogura-Yamada'03]) 
  Suppose

 satisfies

where

  Then



 How can we combine Nonexpansive Operators with 
Hybrid Steepest Descent Method for   

Hierarchical Convex Optimization ? 

 [Yamada-Ogura-Shirakawa '02],[Yamada-Yukawa-Yamagishi '11],
               [Ono-Yamada '15], [Yamagishi-Yamada '17]

Next we demonstrate  a simple strategy 
in an application to statistical estimation problem !
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Design 
matrix

Response 
vector

Noise 
vector

Standard 
Deviation of 
Entire noise

 where



   Lasso  [Robert Tibshirani '96] 

 TREX  

[Koltchinskii, Lounici, and Tsybakov'11], [Rigollet and Tsybakov'11]

A Prediction Bound for Lasso

   A powerful enhancement of  Lasso



 TREX: an enhancement of Lasso

 where

Nonconvex

convex

Great News 1



j th convex subproblem of TREX

A Reformulation for Proximal Splitting

Great News 2



Product Space Reform. TREX subproblem

 A Fixed Point Characterization with Douglas-Rachford Operator





Example





Numerical Test  (Underdetermined case)

K-M algorithm with Douglas-Rachford Operator 

Hierarchical TREX for Promoting Flatness



Numerical Performance



Conclusion
1. We introduced a simple strategy for  Hierarchical  Convex    
       Optimization which can  enhance further existing 
    proximal splitting algorithms without losing their optimality. 

[Yamada, Yukawa, Yamagishi 2011]
I. Yamada, M. Yukawa, M. Yamagishi, “Minimizing the Moreau envelope of nonsmooth 
convex functions over the fixed point set of certain quasi-nonexpansive mappings,“
In: Fixed-point algorithms for inverse problems in science and engineering, 
pp.343-388, Springer, 2011. 

[Yamagishi, Yamada 2017]

2. The proposed strategies are based on destined mariage:    
    Proximal splitting operators + Hybrid steepest descent method.

3. We have demonstrated an application to 
         Hierarchical   Enhancement  of  Lasso estimator. 
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