Asynchronous Parallel Applications of Block-Iterative Splitting

Jonathan Eckstein Rutgers University

Joint work with

Theory: Patrick Combettes

North Carolina State University

Stochastic application: Jean-Paul Watson, David L. Woodruff Sandia National Laboratories, University of California, Davis

> Funded in part by US National Science Foundation Grants CCF-1115638, CCF-1617617

Rutgers Business School Newark and New Brunswick

Simplified Block-Iterative Splitting: Problem Setting

- Hilbert spaces $\mathcal{H}_0, \mathcal{H}_1, \dots, \mathcal{H}_n$
- Maximal monotone operators $T_i: \mathcal{H}_i \Longrightarrow \mathcal{H}_i \quad \forall i \in 1..n$
- Continuous linear maps $L_i: \mathcal{H}_0 \to \mathcal{H}_i \quad \forall i \in 1..n$

Problem: find
$$x \in \mathcal{H}_0$$
: $0 \in \sum_{i=1}^n L_i^* T_i(L_i x)$

• As in previous talk, but expressed as a single inclusion involving only one group of operators

Simplified Block-Iterative Splitting

• Define the *Kuhn-Tucker set*

$$Z = \left\{ (z, w_1, \dots, w_n) \, \middle| \, w_i \in T_i(L_i z) \ \forall i \in 1..n, \ \sum_{i=1}^n L_i^* w_i = 0 \right\}$$

- Whenever $(z, w_1, \dots, w_n) \in Z$, the vector z solves our problem
- Given $(x_i, y_i) \in \text{Graph}(T_i) \ \forall i \in 1..n$, define

$$\varphi(z, w_1, \dots, w_n) = \sum_{i=1}^n \left\langle L_i z - x_i, y_i - w_i \right\rangle$$

$$\Rightarrow \quad \varphi(z, w_1, \dots, w_n) \le 0 \quad \forall (z, w_1, \dots, w_n) \in Z$$

(follows from monotonicity of T_1, \dots, T_n)

- $\varphi(\cdot)$ is affine on the linear subspace \mathcal{K} given by $\sum_{i=1}^{n} L_{i}^{*} w_{i} = 0$ since quadratic terms are $\sum_{i=1}^{n} \langle L_{i} z, -w_{i} \rangle = \langle z, -\sum_{i=1}^{n} L_{i}^{*} w_{i} \rangle = \langle z, 0 \rangle$
- We will operate our algorithm in ${\cal K}$ more restrictive than previous talk; will require projections onto ${\cal K}$

Valid Inequalities for Z

Whenever $y_i \in T_i(x_i) \quad \forall i \in 1..n$,

$$\varphi(z, w_1, \dots, w_n) = \sum_{i=1}^n \langle L_i z - x_i, y_i - w_i \rangle \le 0 \quad \forall (z, w_1, \dots, w_n) \in Z$$

But also: these inequalities fully characterize Z within \mathcal{K} :

Cutting Off an Arbitrary Point in $\mathcal{K} \setminus Z$

- Take any $\overline{p} = (\overline{z}, \overline{w}_1, \dots, \overline{w}_n) \in \mathcal{K}$
- For each $i \in 1..n$, compute the unique proximal decomposition

 $(x_i, y_i) \in \text{Graph}(T_i)$: $x + c_i y_i = L_i \overline{z} + c_i \overline{w_i}$ for some $c_i > 0$, hence

$$\varphi(\overline{z}, \overline{w}_1, \dots, \overline{w}_n) = \sum_{i=1}^n \left\langle L_i \overline{z} - x_i, y_i - \overline{w}_i \right\rangle$$
$$= \sum_{i=1}^n c_i \left\| y_i - \overline{w}_i \right\|^2 = \sum_{i=1}^n \left(\frac{1}{c_i} \right) \left\| L_i \overline{z} - x_i \right\|^2 \ge 0$$

• And if $\varphi(\overline{z}, \overline{w}_1, ..., \overline{w}_n) = 0$, then $L_i \overline{z} = x_i$ and $\overline{w}_i = y_i \forall i$, so $(\overline{z}, \overline{w}_1, ..., \overline{w}_n)$ is already in Z since $y_i \in T_i(x_i) \forall i \in 1..n$

Therefore:

- We may strictly separate any $\overline{p} = (\overline{z}, \overline{w}_1, \dots, \overline{w}_n) \in \mathcal{K} \setminus Z$ from Z
- Inequalities of the form $\varphi(z, w_1, \dots, w_n) \leq 0$ fully characterize Z
- Z has to be a closed convex set (can prove in other ways...)

Generic Projection Method for a Closed Convex Set Z

This structure suggests that we can use the following general recipe for finding a point in a closed convex set Z:

- Given $p_k \in \mathcal{K}$, find separating hyperplane H_k between p_k and Z
- Project p_k onto H_n , possibly with an overrelaxation factor $\lambda_k \in [\varepsilon, 2-\varepsilon]$, giving p_{k+1} , and repeat...

- Fejér monotone: non-increasing distance to all points in Z
- Separators are "sufficiently deep" \Rightarrow (weak) convergence to some point in Z

One Way to Use this Idea (Similar to E and Svaiter 2009)

Here is one possible algorithm, for fixed $0 < c_{\min} \leq c_{\max}$

Starting with an arbitrary $(z^0, w_1^0, \dots, w_n^0) \in \mathcal{K}$:

1. For i = 1, ..., n, pick any $c_{i,k} \in [c_{\min}, c_{\max}]$ and find the unique $(x_i^k, y_i^k) \in \text{Graph}(T_i): x_i^k + c_{i,k} y_i^k = L_i z^k + c_{i,k} w_i^k$ (prox operation) (Decomposition Step)

2. Define
$$\varphi_k(z, w_1, ..., w_n) = \sum_{i=1}^n \langle L_i z - x_i^k, y_i^k - w_i \rangle$$

3. Compute $(z^{k+1}, w_1^{k+1}, ..., w_n^{k+1}) \in \mathcal{K}$ by projecting $(z^k, w_1^k, ..., w_n^k)$ onto the halfspace $\varphi_k(z, w_1, ..., w_n) \leq 0$ (possibly with some overrelaxation) (Coordination Step)

Computing the Projection

Generic formula for projecting \overline{p} onto $\{p \mid \langle a, p \rangle \leq b\}$:

$$p^{+} = \overline{p} - \left(\frac{\max\left\{\left\langle a, p\right\rangle - b, 0\right\}}{\left\|a\right\|^{2}}\right)a$$

In the case of the halfspace $\{p \in \mathcal{K} \mid \varphi_k(p) \leq 0\} \subset \mathcal{K}$,

$$a = \operatorname{proj}_{\mathcal{K}}\left(\sum_{i=1}^{n} y_{i}^{k}, x_{1}^{k}, \dots, x_{n}^{k}\right)$$

- Difference from last talk: There could be problems if $proj_{\mathcal{K}}$ is difficult to compute
- But often it is straightforward
- For example, suppose $\mathcal{H}_0 = \mathcal{H}_1 = \cdots = \mathcal{H}_n$ the L_i are all identity matrices, so the problem is $0 \in \sum_{i=1}^n T_i(x)$. Then

$$\operatorname{proj}_{\mathcal{K}}\left(v, x_{1}^{k}, \dots, x_{n}^{k}\right) = \left(v, x_{1}^{k} - \overline{x}, \dots, x_{n}^{k} - \overline{x}\right), \text{ where } \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Making the Method More General

• At each iteration k, we do not process all the operators i = 1, ..., n, but just some subset $I_k \subseteq \{1, ..., n\}$

o For the others, we just recycle $(x_i^k, y_i^k) = (x_i^{k-1}, y_i^{k-1})$

• We also consider lags:

Find $(x_i^k, y_i^k) \in \text{Graph}(T_i): x_i^k + c_{i,k} y_i^k = L_i z^{d_k(i)} + c_i w_i^{d_k(i)}$

where $d_k(i) \le k$ is some possibly earlier iteration.

• We also allow errors

 $(x_i^k, y_i^k) \in \text{Graph}(T_i): x_i^k + c_{i,k} y_i^k = L_i z^{d_k(i)} + c_i w_i^{d_k(i)} + e_i^k$

- Still have valid cuts for Z because $(x_i^k, y_i^k) \in \text{Graph}(T_i) \quad \forall i \in 1..n$
- But are they sufficiently deep to force convergence to Z? In some cases they might not cut off $(z^k, w_1^k, ..., w_n^k)$ at all...

Full Algorithm (Still Not as General as Previous Talk) For k = 1, 2, ...

Find
$$(x_{i}^{k}, y_{i}^{k}) \in \operatorname{Graph}(T_{i}): x_{i}^{k} + c_{i,k} y_{i}^{k} = L_{i} z^{d_{k}(i)} + c_{i} w_{i}^{d_{k}(i)} + e_{i}^{k} \quad i \in I_{k}$$

 $(x_{i}^{k}, y_{i}^{k}) = (x_{i}^{k-1}, y_{i}^{k-1}) \quad i \in 1..n \setminus I_{k}$
 $(u_{1}^{k}, ..., u_{n}^{k}) = \operatorname{proj}_{\mathcal{L}}(x_{1}^{k}, ..., x_{n}^{k}), \text{ where } \mathcal{L} = \left\{ (w_{1}, ..., w_{n}) \mid \sum_{i=1}^{n} L_{i}^{*} w_{i} = 0 \right\}$
 $v^{k} = \sum_{i=1}^{n} L_{i}^{*} y_{i}^{k}$
 $\theta_{k} = \frac{\max\left\{\sum_{i=1}^{n} \langle L_{i} z - x_{i}^{k}, y_{i}^{k} - w_{i} \rangle, 0\right\}}{\left\| v^{k} \right\|^{2} + \sum_{i=1}^{n} \left\| u_{i}^{k} \right\|^{2}}$
Pick any $\lambda \in [\varepsilon, 2 - \varepsilon]$
 $z^{k+1} = z^{k} - \lambda_{k} \theta_{k} u_{i}^{k} \forall i$

Convergence of the More General Method

The cuts are sufficiently deep (on average) and the method does converge (weakly) under the following assumptions:

• Quasicyclic control: (there is a bound to how long we can ignore any given operator) there exists some integer $M \ge 0$ such that

$$\left(\bigcup_{k=\ell}^{\ell+M} I_k\right) = \{1,\ldots,n\} \quad \forall \ell \ge 0$$

This control rule borrowed from set intersection methods

• Bounded lags: there exists an integer $D \ge 0$ such that

$$\max\{0, k - D\} \le d_k(i) \le k \quad \forall k \ge 0, \forall i \in I_k$$

• Relative error criterion: there exists $B \ge 0, \sigma \in [0,1[$ such that

$$\left(\forall k \ge 0, \forall i \in I_k \right) \quad \left\| e_i^k \right\| \le B \quad \left\langle e_i^k, L_i z^{d_k(i)} - x_i^k \right\rangle \ge -\sigma \left\| L_i z^{d_k(i)} - x_i^k \right\|^2$$
$$\left\langle e_i^k, y_i^k - w_i^{d_k(i)} \right\rangle \le \sigma \left\| y_i^k - w_i^{d_k(i)} \right\|^2$$

Implications

This algorithm (and the more general one in the previous talk) have some unique features among splitting methods

• The sets *I*_k mean that we can adjust the balance between effort expended solving subproblems (the prox operations) and the effort expended on coordination

 In most *n*-way splitting methods, every operator must be preocessed before you perform a coordination step

• Together, the *I_k* and the lags permit a kind of asynchronous parallel operation: at each iteration, you process some set of subproblem calculations that may have been initiated at earlier iterations.

If the operation $\text{proj}_{\mathcal{L}}$ is problematic, use the more general method of the previous talk instead

An Example Application:

A Non-Random Asynchronous *n*-Block ADMM-Like Algorithm

Problem, for f_1, \ldots, f_n closed proper convex:

min
$$\sum_{i=1}^{n} f_i(t_i)$$

ST $\sum_{i=1}^{n} M_i t_i = b$

Dual formulation (assuming standard regularity conditions):

$$\min_{x} \sum_{i=1}^{n} f_{i}^{*} \left(-M_{i}^{*} x \right) + \left\langle x, b \right\rangle \quad \longleftrightarrow \quad 0 \in \sum_{i=1}^{n} (-M_{i}) \partial f_{i}^{*} \left(-M_{i}^{*} x \right) + b$$

One possible way to apply our algorithm: for any $b_1 + \cdots + b_n = b$,

$$T_i(x) = (-M_i)\partial f_i^* (-M_i^* x) + b_i \quad \forall i$$

We then use the framework above with $L_i = \text{Id} \quad \forall i \in 1..n \text{ and } e_i^k \equiv 0$

A Non-Random Asynchronous ADMM-Like Algorithm

Workers' loop: $(b_i - w_i \text{ is the "target" value for } M_i t_i)$

Wait to receive command
$$(z, i, w_i, \mu)$$
 from "controller"
 $t_i \in \operatorname{Arg\,min}_t \left\{ f_i(t) + \langle z, M_i t \rangle + \frac{\mu}{2} \| M_i t - (b_i - w_i) \|^2 \right\}$
 $x_i = z + \mu \left(M_i t_i - (b_i - w_i) \right) \qquad y_i = b_i - M_i t_i$
Send (i, x_i, y_i, t_i) back to controller

- Looks like augmented Lagrangian iteration with multiplier z_i , penalty μ_i , and constraint $M_i t_i = b_i w_i$, and like ADMM subproblem
- Many workers operating in parallel, asynchronously

Controller starts with

•
$$z, w_1, \ldots, w_n : \sum_{i=1}^n w_i = 0$$

• A set $\Omega = 1..\omega_{max}$ of available workers

A Non-Random Asynchronous ADMM-Like Algorithm: Controller

"Controller" loop (leaving out iteration indices for simplicity):

While
$$\Omega$$
 nonempty
Pick $i \in \{1,...,n\}$ and remove some ω from Ω (*)
Pick $\mu \in [\mu_{\min}, \mu_{\max}]$ and send (z, i, w_i, μ) to ω
Wait for at least one worker to complete a task
For each worker ω with a completed task
Receive (i, x_i, y_i, t_i) from ω
Insert ω into Ω
 $v \leftarrow \sum_{i=1}^{n} y_i = b - \sum_{i=1}^{n} M_i t_i$ $\overline{x} \leftarrow \frac{1}{n} \sum_{i=1}^{n} x_i$ $u_i \leftarrow x_i - \overline{x}$ $\forall i$
 $d \leftarrow ||v||^2 + \sum_{i=1}^{n} ||u_i||^2$ $\lambda \leftarrow$ arbitrary choice $\in [\varepsilon, 2 - \varepsilon]$
 $\theta \leftarrow \lambda \max \{0, \langle z - x_i, y_i - w_i \rangle\}$
 $x \leftarrow x - (\theta/d) v$
 $w_i \leftarrow w_i - (\theta/d) u_i$ $\forall i$

More about the Algorithm, Parallel Implementation

- $||v||^2$ measures the constraint violation and $\sum_{i=1}^n ||u_i||^2$ measures the "disagreement" about the dual variables
- The controller algorithm description above assumes a global memory space
- There is a more general version of the controller that accounts for partitioned memory: some subsystems *i* can only be processed on certain processors
 - Details too complicated to show here, but conceptually similar
- The implementation style is aimed at multicore or HPC hardware rather than distributed sensor networks etc. on graphs
- The controller should not have to be a serial bottleneck the controller functions may also be distributed

Convergence Result

Proposition: In the ADMM-like algorithm above, suppose

- There is a bound on the ratio of the longest to shortest possible subproblem solution time.
- Once in every $\overline{M} > 0$ executions of line (*), each possible value of *i* is selected at least once

Then z converges to an optimal dual solution and the t_i are asymptotically optimal for the primal:

$$\sum_{i=1}^{n} M_i t_i \to b$$
 and $\lim \sup \left(\sum_{i=1}^{n} f_i(t_i) \right) \leq f_{opt}$

Commentary

Several asynchronous ADMM-like methods have been suggested for an arbitrary number of blocks *n*. However, they each have some combination of the following features:

- They require randomness in the activation of blocks and convergence is in expectation (not along every sample path?)
- Convergence is ergodic (in the long-term average of the iterates)
- They require restrictive assumptions about the problem

This new method has "plain" convergence and does not require randomness or restrictive assumptions (only some standard convex-analytic regularity)

 We also have huge freedom in choosing the proximal parameters (stepsizes) inherited from the projective splitting framework - can vary by both iteration and block

A Related Application: Convex Stochastic Programming

• Consider a standard stochastic programming scenario tree:

- π_i is the probability of last-stage scenario *i*
- Will use "scenario" as a shorthand for "last-stage scenario"

Convex Stochastic Programming

- System walks randomly from the root to some leaf
- At each node there are decision variables, for example

 How much of an investment to buy or sell
 How much to run a power generator, etc...
- ... and constraints that depend on earlier decisions
- Model alternates decisions and uncertainty resolution

• Replicate decision variables: *n* copies at every stage

• Replicate decision variables: *n* copies at every stage

• x_{is} is the vector of decision variables for scenario *i* at stage *s*

• Replicate decision variables: *n* copies at every stage

- x_{is} is the vector of decision variables for scenario *i* at stage *s*
- X_i is the space of all variables pertaining to scenario i; elements are x_i = (x_{i1},..., x_{iT})

• Replicate decision variables: *n* copies at every stage

- x_{is} is the vector of decision variables for scenario *i* at stage *s*
- X_i is the space of all variables for scenario *i*; elements are $x_i = (x_{i1}, ..., x_{iT})$
- $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$ is space of all decision variables; elements are $x = (x_1, \dots, x_n) = ((x_{11}, \dots, x_{1T}), \dots, (x_{n1}, \dots, x_{nT}))$

- \mathcal{Z}_i is \mathcal{X}_i without the last stage; elements $z_i = (z_{i1}, \dots, z_{i,T-1})$
- $\mathcal{Z} = \mathcal{Z}_1 \times \cdots \times \mathcal{Z}_n$ is the space of all variables except the last stage: elements $z = (z_1, \dots, z_n) = ((z_{11}, \dots, z_{1,T-1}), \dots, (z_{n1}, \dots, z_{n,T-1}))$

Nonanticipativity Subspace

• $\mathcal{N} \subset \mathcal{Z}$ is the subspace of \mathcal{Z} meeting the *nonanticipativity* constraints that $z_{is} = z_{js}$ whenever scenarios *i* and *j* are indistinguishable at stage *s*

Projecting onto the Nonanticipativity Space

• Following Rockafeller and Wets (1991), we use the following probability-weighted inner product on \mathcal{Z} :

$$\langle (z_1,\ldots,z_n),(q_1,\ldots,q_n)\rangle = \sum_{i=1}^n \pi_i \langle z_i,q_i\rangle$$

• With this inner product, the projection map $\text{proj}_{\mathcal{N}}: \mathcal{Z} \to \mathcal{N}$ is given by

$$proj_{\mathcal{N}}(q) = z, \text{ where}$$

$$z_{is}^{k+1} = \frac{1}{\left(\sum_{j \in S(i,s)} \pi_j\right)} \sum_{j \in S(i,s)} \pi_j q_{js}^{k+1} \qquad i = 1, \dots, n, \ s = 1, \dots, T-1$$

and S(i,s) is the set of scenarios indistinguishable from scenario *i* at time *s*.

Formulation Continued

• $h_i: \mathcal{X}_i \to \mathbb{R} \cup \{+\infty\}$ is the cost function for scenario *i*

o Includes all constraints within scenario *i* (infeasible points have $h_i(x_i) = +\infty$)

 \circ Assume that h_i is convex

- $M_i: \mathcal{X}_i \to \mathcal{Z}_i$ is the linear map $(x_{i1}, \dots, x_{iT}) \mapsto (x_{i1}, \dots, x_{i,T-1})$ (just drops last stage from scenario *i*)
- $M : \mathcal{X} \to \mathcal{Z}$ takes $(x_1, \dots, x_n) \mapsto (M_1 x_1, \dots, M_n x_n)$ (just drops last stage from full decision vector)

We may formulate a convex stochastic program as

$$\min_{x} \quad \sum_{i=1}^{n} \pi_{i} h_{i}(x_{i})$$

ST $Mx \in \mathcal{N}$

Formulation Continued

Further define $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ and $g: \mathcal{Z} \to \mathbb{R} \cup \{+\infty\}$ by

•
$$f(x) = \sum_{i=1}^{n} \pi_{i} h_{i}(x_{i})$$

• $g(z) = \begin{cases} 0, & z \in \mathcal{N} \\ +\infty, & z \notin \mathcal{N} \end{cases}$ (the convex indicator function of \mathcal{N})

Then our stochastic program is just

$$\min_{x\in\mathcal{X}}f(x)+g(Mx)$$

Progressive Hedging (Rockafellar and Wets 1991)

• Apply the ADMM (alternating direction method of multipliers) and obtain, with iterates $\{x^k\} \subset \mathcal{X}, \{z^k\} \subset \mathcal{N}, \{w^k\} \subset \mathcal{N}^{\perp},$

$$\begin{aligned} x_{i}^{k+1} &\in \operatorname{Arg\,min}_{x_{i}} \left\{ h_{i}(x_{i}) + \left\langle M_{i}x_{i}, w^{k} \right\rangle + \frac{\rho}{2} \left\| M_{i}x_{i} - z_{i}^{k} \right\|^{2} \right\} \quad i = 1, \dots, n \\ z^{k+1} &= \operatorname{proj}_{\mathcal{N}}(Mx^{k+1}) \\ w^{k+1} &= w^{k} + \rho(Mx^{k+1} - z^{k+1}) \end{aligned}$$

- Minimize each scenario separately, but with a linear-quadratic perturbation on all variables except the last stage
- Average the results into a nonanticipative z
- Update Lagrange multiplier estimates w and repeat
- Note: Rockafellar and Wets present a derivation from first principles, but it is also an application of the ADMM

Progressive Hedging is Naturally Parallel...

- The minimization step (subproblem) naturally decomposes by scenario
- The remaining calculations take comparatively little time and may also be parallelized (only communication is for the summations required by $proj_N$, and is simple/efficient)

...But Also Naturally Synchronous

- If some scenarios take longer than others, the algorithm cannot proceed until the slowest one completes
- You must solve all *n* subproblems between successive coordination steps

Setup to Apply Asynchronous Splitting Method

Problem setup for stochastic programming

- $\mathcal{H}_0 = \mathcal{N}$ (run algorithm in nonanticipativity subspace)
- $\mathcal{H}_i = \mathcal{Z}_i$, but with inner product multiplied by π_i
- $L_i: \mathcal{N} \to \mathcal{Z}_i$ selects the subvector relevant to scenario *i*
- $f_i(\tilde{x}_i) = \min_{x_{iT}} \{\pi_i h_i((\tilde{x}_i, x_{iT}))\}$ minimizes scenario *i*'s cost over the last-stage variables

o Remember, scenario-infeasible points have $h_i(x_i) = +\infty$

• Then our stochastic program is just

$$\min_{x\in\mathcal{H}_0}\sum_{i=1}^n f_i(L_ix)$$

- Apply the method from earlier in the talk for $0 \in \sum_{i=1}^{n} L_{i}^{*}T_{i}(L_{i}x)$
- \bullet Conveniently, it turns out that $\mathcal{L}=\mathcal{N}^{\perp},$ so $\mathcal{K}=\mathcal{N}\times\mathcal{N}^{\perp}$

A New, Asynchronous Alternative

Subproblem: (many operating in parallel, asynchronously) Parameters sent from "controller":

- $i \in 1..n$: which scenario to solve
- $z_i = (z_{i1}, ..., z_{i,T-1})$: scenario *i* "target" values, except last stage
- w_i : multipliers (same dimensions as z_i)
- $\rho > 0$: scalar penalty parameter

Receive $i \in 1..n$, $z_i, w_i \in Z_i$, $\rho > 0$ from controller $x_i \in \operatorname{Arg\,min}_{x_i} \left\{ h_i(x_i) + \left\langle M_i x_i, z_i \right\rangle + \frac{\rho}{2} \|M_i x_i - z_i\|^2 \right\}$ $y_i = w_i + \rho(M_i x_i - z_i)$ Return $i, \quad \tilde{x}_i \doteq M_i x_i, \quad y_i$ to controller

Looks like progressive hedging subproblem + part of multiplier update

A New, Asynchronous Alternative: "Controller" Setup

The controller maintains working variables:

- $z = (z_1, \dots, z_n) \in \mathcal{N}$
- $W = (W_1, \ldots, W_n) \in \mathcal{N}^{\perp}$
- $\tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_n) \in \mathcal{Z}$ (the tildes mean no last-stage variables)
- $y = (y_1, \dots, y_n) \in \mathcal{Z}$

At each iteration we also compute step direction vectors:

- $u = (u_1, \ldots, u_n) \in \mathcal{N}^{\perp}$
- $v = (v_1, \dots, v_n) \in \mathcal{N}$

Scalar parameters:

- Primal-dual scaling factor $\gamma > 0$ (improves conditioning; fixed?)
- Subproblem penalty parameters $\rho \in [\rho, \overline{\rho}], \ 0 < \rho \le \overline{\rho}$ (varying)
- Overrelaxation factors $\lambda \in [\varepsilon, 2 \varepsilon]$ (varying)

A New, Asynchronous Alternative: "Controller"

Partial Resemblance to PH

- Subproblem has recognizable pieces of the PH subproblem optimization step and multiplier update
- \bullet Controller has $\operatorname{proj}_{\mathcal{N}}$ operations
- But otherwise the controller algorithm comes from our splitting framework
- Unlike progressive hedging, the algorithm runs asynchronously

 Only a single subproblem needs to complete between
 cycles of the controller (more is OK too)
- In our description, the controller looks centralized/serial, but it could be distributed with careful implementation

Conclusion / Summary / Ongoing Work

- A general decomposition method for monotone inclusions
- Gives freedom to...
 - Strike arbitrary balance between computing and coordination
 - Not have to reevaluate every operator between each pair of successive coordination steps
 - o Implement asynchronously without requiring randomness
- Numerous possible applications:
 - Asynchronous ADMM-like method without randomness (shown above)
 - Asynchronous stochastic programming decomposition

Some Early Computational Results from JP Watson

- Contingency-constrained AC optimal power flow instances
- Two-stage stochastic programs with *n* scenarios
- We run an asynchronous algorithm essentially the same as described in this talk (but for stochastic programming)
- Compared to progressive hedging (PH)
- Use *n* processors, one per scenario (\approx an ADMM block)
- These are very early results, lots left to do

Problem	n	PH Time	Async Time
case6ww	11	0:00:02	0:00:02
case57	79	0:00:12	0:00:09
case118	117	0:02:03	0:01:40
case300	322	0:02:54	0:02:19

References Part 1

"The mothership"

• Patrick L. Combettes and Jonathan Eckstein. "Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions". *Mathematical Programming*, online July 2016.

References Part 2

- Jonathan Eckstein. "A simplified form of block-iterative operator splitting, and an Asynchronous Algorithm Resembling the Multi-Block ADMM".
 - Convergence analysis for simplified framework in this talk...
 - But weaker initialization conditions than the "mothership"
 - And an asynchronous ADMM-like method generalizing the one in this talk

More realistic applications coming "soon"...