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Simplified Block-Iterative Splitting: Problem Setting 

• Hilbert spaces 0 1, , , n     

• Maximal monotone operators : 1..i i iT i n∀ ∈    

• Continuous linear maps 0: 1..i iL i n→ ∀ ∈   

Problem:  find 0x∈  :  *

1
0 ( )

n

i i i
i

L T L x
=

∈∑  

• As in previous talk, but expressed as a single inclusion 
involving only one group of operators  
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Simplified Block-Iterative Splitting 

• Define the Kuhn-Tucker set 

{ }*
1 1

( , , , ) ( ) 1.. , 0n
n i i i i ii

Z z w w w T L z i n L w
=

= ∈ ∀ ∈ =∑  

• Whenever 1( , , , )nz w w Z∈ , the vector z solves our problem 

• Given ( , ) Graph( ) 1..i i ix y T i n∈ ∀ ∈ , define 

1
1

1 1

( , , , ) ,

( , , , ) 0 ( , , , )

n

n i i i i
i

n n

z w w L z x y w

z w w z w w Z

ϕ

ϕ
=

= − −

⇒ ≤ ∀ ∈

∑

 

 

(follows from monotonicity of 1, , nT T ) 

• ( )ϕ ⋅  is affine on the linear subspace  given by *
1

0n
i ii

L w
=

=∑  

since quadratic terms are *
1 1

, , ,0n n
i i i ii i

L z w z L w z
= =

− = − =∑ ∑  

• We will operate our algorithm in  — more restrictive than 
previous talk; will require projections onto  
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Valid Inequalities for Z 

Whenever ( ) 1..i i iy T x i n∈ ∀ ∈ , 

1 1
1

( , , , ) , 0 ( , , , )
n

n i i i i n
i

z w w L z x y w z w w Zϕ
=

= − − ≤ ∀ ∈∑   

 
 
But also: these inequalities fully characterize Z within : 

Z { }
 is affine

( ) 0

( ) 0

H p p

p p Z

ϕ

ϕ

ϕ

= =

≤ ∀ ∈
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Cutting Off an Arbitrary Point in \ Z   

• Take any 1( , , , )np z w w= ∈  

• For each 1..i n∈ , compute the unique proximal decomposition 

( , ) Graph( ) :i i i i i i i ix y T x c y L z c w∈ + = +   for some 0ic > , hence  

1 1

2 2

1 1

( , , , ) ,

1 0

n
n i i i ii

n n
i i i i ii i

i

z w w L z x y w

c y w L z x
c

ϕ
=

= =

= − −

 
= − = − ≥ 

 

∑

∑ ∑



 

• And if 1( , , , ) 0nz w wϕ = , then i iL z x=  and i iw y i= ∀ , so 

1( , , , )nz w w  is already in Z since ( ) 1..i i iy T x i n∈ ∀ ∈  

Therefore: 

• We may strictly separate any 1( , , , ) \np z w w Z= ∈  from Z  

• Inequalities of the form 1( , , , ) 0nz w wϕ ≤  fully characterize Z 

• Z has to be a closed convex set (can prove in other ways…) 
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Generic Projection Method for a Closed Convex Set Z 

This structure suggests that we can use the following general 
recipe for finding a point in a closed convex set Z: 

• Given kp ∈, find separating hyperplane kH  between kp  and Z  

• Project kp  onto nH , possibly with an overrelaxation factor 
[ ,2 ]kλ ε ε∈ − , giving 1kp + , and repeat… 

 
• Fejér monotone: non-increasing distance to all points in Z 

• Separators are “sufficiently deep” ⇒ (weak) convergence to 
some point in Z 

Z 

{ }
 is affine

( ) 0

( ) 0
( ) 0

k

k k

k

k k

H p p

p p Z
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>

1kp +

kp
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One Way to Use this Idea (Similar to E and Svaiter 2009) 

Here is one possible algorithm, for fixed min max0 c c< ≤  

Starting with an arbitrary 0 0 0
1( , , , )nz w w ∈ :   

1. For 1, ,i n=  , pick any [ ], min max,i kc c c∈  and find the unique 

, ,( , ) Graph( ) :k k k k k k
i i i i i k i i i k ix y T x c y L z c w∈ + = +  (prox operation) 

(Decomposition Step) 

2. Define 1
1

( , , , ) ,
n

k k
k n i i i i

i
z w w L z x y wϕ

=

= − −∑  

3. Compute 1 1 1
1( , , , )k k k

nz w w+ + + ∈  by projecting 1( , , , )k k k
nz w w  

onto the halfspace 1( , , , ) 0k nz w wϕ ≤  
(possibly with some overrelaxation)      (Coordination Step) 
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Computing the Projection 

Generic formula for projecting p  onto { },p a p b≤  : 

{ }
2

max , ,0a p b
p p a

a
+

 −
= −   

 
  

In the case of the halfspace { }( ) 0kp pϕ∈ ≤ ⊂  , 

( )11
proj , , ,n k k k

i ni
a y x x

=
= ∑    

• Difference from last talk:  
   There could be problems if proj is difficult to compute 

• But often it is straightforward 

• For example, suppose 0 1 n= = =    the iL  are all identity 
matrices, so the problem is 

1
0 ( )n

ii
T x

=
∈∑ .  Then 

( ) ( ) 1
1 1 1

proj , , , , , , , nk k k k
n n in i

v x x v x x x x x x
=

= − − = ∑ where    
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Making the Method More General 

• At each iteration k, we do not process all the operators 
1, ,i n=  , but just some subset {1, , }kI n⊆   

o For the others, we just recycle 1 1( , ) ( , )k k k k
i i i ix y x y− −=  

• We also consider lags: 

Find ( ) (
,

)( , ) Graph( ) : k kk k k k
i i i i i

d i
k i i i

d i
ix y T x c y L z c w∈ + = +  

where ( )kd i k≤  is some possibly earlier iteration. 

• We also allow errors 
( ) ( )

,( , ) Graph( ) : k kd i d ik k k k
i i i i i k

k
ii i i ix y T x c y L z c w e∈ + ++ =  

• Still have valid cuts for Z because ( , ) Graph( ) 1..k k
i i ix y T i n∈ ∀ ∈  

• But are they sufficiently deep to force convergence to Z ? 
In some cases they might not cut off 1( , , , )k k k

nz w w  at all… 
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Full Algorithm (Still Not as General as Previous Talk) 

For 1,2,k =  

{ }

{ }

( ) ( )
,

1 1

*
1 1 1 1

*
1

1
2

( , ) Graph( ) :
( , ) ( , ) 1.. \

( , , ) proj ( , , ) ( , , ) 0

max , ,0

Find 

,  where 

k kd i d ik k k k k
i i i i i k i i i i i k

k k k k
i i i i k

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k k

x y T x c y L z c w e i I
x y x y i n I

u u x x w w L w

v L y

L z x y w

v
θ

− −

=

=

=

∈ + = + + ∈
= ∈

= = =

=

− −
=

∑

∑
∑

    

2

1

1

1

[ ,2 ]Pick any 

n k
ii

k k k
k k

k k k
i i k k i

u

z z v

w w u i

λ ε ε

λ θ

λ θ

=

+

+

+

∈ −

= −

= − ∀

∑
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Convergence of the More General Method 

The cuts are sufficiently deep (on average) and the method does 
converge (weakly) under the following assumptions:  

• Quasicyclic control: (there is a bound to how long we can 
ignore any given operator) there exists some integer 0M ≥  
such that  

{1, , } 0
M

k
k

I n
+

=

 
= ∀ ≥ 

 





 



  

This control rule borrowed from set intersection methods 

• Bounded lags: there exists an integer 0D ≥  such that 

max{0, } ( ) 0,k kk D d i k k i I− ≤ ≤ ∀ ≥ ∀ ∈  

• Relative error criterion:  there exists 0, [0,1[B σ≥ ∈  such that 

( )
2( ) ( )

2( ) ( )

0, ,

,

k k

k k

d i d ik k k k
k i i i i i i

d i d ik k k
i i i i i

k i I e B e L z x L z x

e y w y w

σ

σ

∀ ≥ ∀ ∈ ≤ − ≥ − −

− ≤ −
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Implications 

This algorithm (and the more general one in the previous talk) 
have some unique features among splitting methods 

• The sets kI  mean that we can adjust the balance between 
effort expended solving subproblems (the prox operations) and 
the effort expended on coordination 

o In most n-way splitting methods, every operator must be 
preocessed before you perform a coordination step 

• Together, the kI  and the lags permit a kind of asynchronous 
parallel operation:  at each iteration, you process some set of 
subproblem calculations that may have been initiated at 
earlier iterations. 

 

If the operation proj is problematic, use the more general 
method of the previous talk instead 
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An Example Application:   
A Non-Random Asynchronous n-Block ADMM-Like Algorithm 

Problem, for 1, , nf f  closed proper convex: 

1

1

min ( )

ST

n
i ii

n
i ii

f t

M t b
=

=
=

∑
∑

 

Dual formulation (assuming standard regularity conditions): 

( ) ( )* * * *

1 1
min , 0 ( )

n n

i i i i ix i i
f M x x b M f M x b

= =

− + ∈ − ∂ − +∑ ∑  

One possible way to apply our algorithm: for any 1 nb b b+ + = , 

( )* *( ) ( )i i i i iT x M f M x b i= − ∂ − + ∀  

We then use the framework above with Id 1..iL i n= ∀ ∈  and 0k
ie ≡   
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A Non-Random Asynchronous ADMM-Like Algorithm 

Workers’ loop: ( i ib w−  is the “target” value for i iM t ) 

Wait to receive command ( , , , )iz i w µ  from “controller” 

{ }
( )

2
2Arg min ( ) , ( )

( )

i i i i i i
t

i i i i i i i i i

t f t z M t M t b w

x z M t b w y b M t

µ

µ

∈ + + − −

= + − − = −
 

Send ( , , , )i i ii x y t  back to controller 

• Looks like augmented Lagrangian iteration with multiplier z, 
penalty µ , and constraint i i i iM t b w= − , and like ADMM 
subproblem 

• Many workers operating in parallel, asynchronously 

Controller starts with 

• 1 1
, , : 0n

n ii
z w w w

=
=∑   

• A set max1..ωΩ =  of available workers  
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A Non-Random Asynchronous ADMM-Like Algorithm: Controller 

“Controller” loop (leaving out iteration indices for simplicity): 

While Ω nonempty 
 Pick {1, , }i n∈    and remove some ω  from Ω     (*) 
 Pick [ ]min max,µ µ µ∈  and send ( , , , )iz i w µ  to ω  
Wait for at least one worker to complete a task 
For each worker ω  with a completed task 
 Receive ( , , , )i i ii x y t  from ω  
 Insert ω  into Ω 

{ }

1
1 1 1

22

1
[ , 2 ]

max 0, ,

( / )
( / )

arbitrary choice

n n n
i i i i i ini i i

n
ii

i i i

i i i

v y b M t x x u x x i

d v u

z x y w

x x d v
w w d u i

λ ε ε

θ λ

θ
θ

= = =

=

← = − ← ← − ∀

← + ← ∈ −

← − −

← −
← − ∀

∑ ∑ ∑
∑
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More about the Algorithm, Parallel Implementation 

• 2v  measures the constraint violation and 2

1

n
ii

u
=∑  measures 

the “disagreement” about the dual variables 
 

• The controller algorithm description above assumes a global 
memory space 

• There is a more general version of the controller that accounts 
for partitioned memory: some subsystems i can only be 
processed on certain processors 

o Details too complicated to show here, but conceptually 
similar 

• The implementation style is aimed at multicore or HPC 
hardware rather than distributed sensor networks etc. on 
graphs 

• The controller should not have to be a serial bottleneck – the 
controller functions may also be distributed 
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Convergence Result 

Proposition:  In the ADMM-like algorithm above, suppose  

• There is a bound on the ratio of the longest to shortest 
possible subproblem solution time. 

• Once in every 0M >  executions of line (*), each possible value 
of i is selected at least once 

Then z converges to an optimal dual solution and the it  are 
asymptotically optimal for the primal: 

1

n
i ii

M t b
=

→∑      and      ( ) opt1
limsup ( )n

i ii
f t f

=
≤∑  
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Commentary 

Several asynchronous ADMM-like methods have been suggested for 
an arbitrary number of blocks n.  However, they each have some 
combination of the following features: 

• They require randomness in the activation of blocks and 
convergence is in expectation (not along every sample path?) 

• Convergence is ergodic (in the long-term average of the 
iterates) 

• They require restrictive assumptions about the problem 

This new method has “plain” convergence and does not require 
randomness or restrictive assumptions (only some standard 
convex-analytic regularity) 

• We also have huge freedom in choosing the proximal 
parameters (stepsizes) inherited from the projective splitting 
framework – can vary by both iteration and block 
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A Related Application: Convex Stochastic Programming 

• Consider a standard stochastic programming scenario tree: 
 

 
• iπ  is the probability of last-stage scenario i  

• Will use “scenario” as a shorthand for “last-stage scenario” 

Last-stage scenarios i = 1, … , n 

Stages 
s = 1,…,T 
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Convex Stochastic Programming 

 
• System walks randomly from the root to some leaf 

• At each node there are decision variables, for example 

o How much of an investment to buy or sell 

o How much to run a power generator, etc...  

• ... and constraints that depend on earlier decisions 

• Model alternates decisions and uncertainty resolution 

Stages 
s = 1,…,T 
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

 

 

isx  
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Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables pertaining to scenario i; 
elements are 1( , , )i i iTx x x=   

 

i ix ∈  

isx  



September 2017        24 of 40 

Problem Formulation and Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables for scenario i; elements are 
   1( , , )i i iTx x x=   

• 1 n= × ×    is space of all decision variables; elements are 
   ( )1 11 1 1( , , ) ( , , ), , ( , , )n T n nTx x x x x x x= =     

x∈  

i ix ∈  

isx  
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Problem Formulation and Notation 

 
• i  is i  without the last stage; elements 1 , 1( , , )i i i Tz z z −=   

• 1 n= × ×   is the space of all variables except the last 
stage: elements ( )1 11 1, 1 1 , 1( , , ) ( , , ), , ( , , )n T n n Tz z z z z z z− −= =      

z∈  

i iz ∈  
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Nonanticipativity Subspace 

• ⊂   is the subspace of   meeting the nonanticipativity 
constraints that is jsz z=  whenever scenarios i and j are 
indistinguishable at stage s 
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Projecting onto the Nonanticipativity Space 

• Following Rockafeller and Wets (1991), we use the following 
probability-weighted inner product on  : 

1 1 1
( , , ), ( , , ) ,n

n n i i ii
z z q q z qπ

=
=∑   

• With this inner product, the projection map proj : →    is 
given by 

( )
1 1

( , )
( , )

proj ( ) ,
1 1, , , 1, , 1

  where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑



 

 

and ( , )S i s  is the set of scenarios indistinguishable from 
scenario i at time s. 
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Formulation Continued 

• : { }i ih → ∪ +∞   is the cost function for scenario i 

o Includes all constraints within scenario i 
(infeasible points have ( )i ih x = +∞) 

o Assume that ih  is convex 

• :i i iM →   is the linear map 1 1 , 1( , , ) ( , , )i iT i i Tx x x x −    
(just drops last stage from scenario i) 

• :M →   takes 1 1 1( , , ) ( , , )n n nx x M x M x    
(just drops last stage from full decision vector) 

 
We may formulate a convex stochastic program as 

1
min ( )

ST

n
i i iix
h x

Mx

π
=

∈

∑
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Formulation Continued 

Further define : { }f → ∪ +∞   and : { }g → ∪ +∞   by 

• 
1

( ) ( )n
i i ii

f x h xπ
=

=∑  

• 
0,

( )
,

z
g z

z
∈

= +∞ ∉




    (the convex indicator function of  ) 

 
Then our stochastic program is just 

min ( ) ( )
x

f x g Mx
∈

+
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Progressive Hedging (Rockafellar and Wets 1991) 

• Apply the ADMM (alternating direction method of multipliers) 
and obtain, with iterates { } ,{ } ,{ }k k kx z w ⊥⊂ ⊂ ⊂   ,  

21

1 1

1 1 1

Arg min ( ) , 1, ,
2

proj ( )
( )

i

k k k
i i i i i i i i

x

k k

k k k k

x h x M x w M x z i n

z Mx
w w Mx z

ρ

ρ

+

+ +

+ + +

 ∈ + + − = 
 

=
= + −





 

• Minimize each scenario separately, but with a linear-quadratic 
perturbation on all variables except the last stage 

• Average the results into a nonanticipative z 

• Update Lagrange multiplier estimates w and repeat 
 

• Note: Rockafellar and Wets present a derivation from first 
principles, but it is also an application of the ADMM 
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Progressive Hedging is Naturally Parallel… 

• The minimization step (subproblem) naturally decomposes by 
scenario 

• The remaining calculations take comparatively little time and 
may also be parallelized (only communication is for the 
summations required by proj , and is simple/efficient) 

…But Also Naturally Synchronous 

• If some scenarios take longer than others, the algorithm 
cannot proceed until the slowest one completes 

• You must solve all n subproblems between successive 
coordination steps 
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Setup to Apply Asynchronous Splitting Method 

Problem setup for stochastic programming 

• 0 =   (run algorithm in nonanticipativity subspace) 

• i i=  , but with inner product multiplied by iπ   

• :i iL →   selects the subvector relevant to scenario i 

• ( ){ }( ) min ( , )
iT

i i i i i iTx
f x h x xπ=   minimizes scenario i’s cost over the 

last-stage variables 

o Remember, scenario-infeasible points have ( )i ih x = +∞ 

• Then our stochastic program is just 

0
1

min ( )n
i iix

f L x
=∈ ∑

 

• Apply the method from earlier in the talk for *

1
0 ( )

n

i i i
i

L T L x
=

∈∑  

• Conveniently, it turns out that ⊥=  , so ⊥= ×     
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A New, Asynchronous Alternative 

Subproblem:  (many operating in parallel, asynchronously) 

Parameters sent from “controller”: 

• 1..i n∈     : which scenario to solve 
• 1 , 1( , , )i i i Tz z z −=   : scenario i “target” values, except last stage 

• iw      : multipliers (same dimensions as iz ) 

• 0ρ >      : scalar penalty parameter 

2

1.. , , , 0

Arg min ( ) ,
2

( )
, ,

Receive  from controller

Return  to controller

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

i n z w

x h x M x z M x z

y w M x z
i x M x y

ρ
ρ

ρ

∈ ∈ >

 ∈ + + − 
 

= + −






 

Looks like progressive hedging subproblem  
+ part of multiplier update 
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A New, Asynchronous Alternative: “Controller” Setup 

The controller maintains working variables: 
• 1( , , )nz z z= ∈   

• 1( , , )nw w w ⊥= ∈  

• 1( , , )nx x x= ∈  
   (the tildes mean no last-stage variables) 

• 1( , , )ny y y= ∈  

At each iteration we also compute step direction vectors: 
• 1( , , )nu u u ⊥= ∈  

• 1( , , )nv v v= ∈  

Scalar parameters: 
• Primal-dual scaling factor 0γ >  (improves conditioning; fixed?) 
• Subproblem penalty parameters [ , ], 0ρ ρ ρ ρ ρ∈ < ≤  (varying) 

• Overrelaxation factors [ ,2 ]λ ε ε∈ −   (varying) 
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A New, Asynchronous Alternative: “Controller” 

repeat 
 while there is a free worker ω  do 
  Choose a scenario i and [ , ]ρ ρ ρ∈  
  Dispatch , , ,i ii z w ρ  to worker ω  
 wait for at least one worker to complete its task 
 for each worker ω  with a completed task 
  Receive , ,i ii x y  from ω  
 proj ( )u x x← −     
 proj ( )v y←   
 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑  

 ( ) ( )1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

    
 if 0φ >  then 
  Choose some [ ,2 ]λ ε ε∈ −  
  ( / )z z vγλφ τ← +   
  ( / )w w uλφ τ← +  
until termination detected 
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Partial Resemblance to PH 

• Subproblem has recognizable pieces of the PH subproblem 
optimization step and multiplier update 

• Controller has proj  operations 

• But otherwise the controller algorithm comes from our 
splitting framework 
 

• Unlike progressive hedging, the algorithm runs asynchronously 

o Only a single subproblem needs to complete between 
cycles of the controller (more is OK too) 

• In our description, the controller looks centralized/serial, but 
it could be distributed with careful implementation 
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Conclusion / Summary / Ongoing Work 

• A general decomposition method for monotone inclusions 

• Gives freedom to… 

o Strike arbitrary balance between computing and 
coordination 

o Not have to reevaluate every operator between each pair 
of successive coordination steps 

o Implement asynchronously without requiring randomness 

• Numerous possible applications: 

o Asynchronous ADMM-like method without randomness 
(shown above) 

o Asynchronous stochastic programming decomposition  



September 2017        38 of 40 

Some Early Computational Results from JP Watson 

• Contingency-constrained AC optimal power flow instances 

• Two-stage stochastic programs with n scenarios 

• We run an asynchronous algorithm essentially the same as 
described in this talk (but for stochastic programming) 

• Compared to progressive hedging (PH) 

• Use n processors, one per scenario (≈ an ADMM block) 

• These are very early results, lots left to do 

Problem n PH Time Async Time 

case6ww 11 0:00:02 0:00:02 

case57 79 0:00:12 0:00:09 

case118 117 0:02:03 0:01:40 

case300 322 0:02:54 0:02:19 
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• Patrick L. Combettes and Jonathan Eckstein.  “Asynchronous 
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July 2016. 
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• Jonathan Eckstein.  “A simplified form of block-iterative 
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More realistic applications coming “soon”… 
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