
September 2017 1 of 40

Asynchronous Parallel Applications of
Block-Iterative Splitting

Jonathan Eckstein
Rutgers University

Joint work with

Theory: Patrick Combettes
North Carolina State University

Stochastic application: Jean-Paul Watson, David L. Woodruff
Sandia National Laboratories, University of California, Davis

Funded in part by US National
Science Foundation Grants
CCF-1115638, CCF-1617617

September 2017 2 of 40

Simplified Block-Iterative Splitting: Problem Setting

• Hilbert spaces 0 1, , , n

• Maximal monotone operators : 1..i i iT i n∀ ∈

• Continuous linear maps 0: 1..i iL i n→ ∀ ∈

Problem: find 0x∈ : *

1
0 ()

n

i i i
i

L T L x
=

∈∑

• As in previous talk, but expressed as a single inclusion
involving only one group of operators

September 2017 3 of 40

Simplified Block-Iterative Splitting

• Define the Kuhn-Tucker set

{ }*
1 1

(, , ,) () 1.. , 0n
n i i i i ii

Z z w w w T L z i n L w
=

= ∈ ∀ ∈ =∑

• Whenever 1(, , ,)nz w w Z∈ , the vector z solves our problem

• Given (,) Graph() 1..i i ix y T i n∈ ∀ ∈ , define

1
1

1 1

(, , ,) ,

(, , ,) 0 (, , ,)

n

n i i i i
i

n n

z w w L z x y w

z w w z w w Z

ϕ

ϕ
=

= − −

⇒ ≤ ∀ ∈

∑

(follows from monotonicity of 1, , nT T)

• ()ϕ ⋅ is affine on the linear subspace given by *
1

0n
i ii

L w
=

=∑

since quadratic terms are *
1 1

, , ,0n n
i i i ii i

L z w z L w z
= =

− = − =∑ ∑

• We will operate our algorithm in — more restrictive than
previous talk; will require projections onto

September 2017 4 of 40

Valid Inequalities for Z

Whenever () 1..i i iy T x i n∈ ∀ ∈ ,

1 1
1

(, , ,) , 0 (, , ,)
n

n i i i i n
i

z w w L z x y w z w w Zϕ
=

= − − ≤ ∀ ∈∑

But also: these inequalities fully characterize Z within :

Z { }
 is affine

() 0

() 0

H p p

p p Z

ϕ

ϕ

ϕ

= =

≤ ∀ ∈

September 2017 5 of 40

Cutting Off an Arbitrary Point in \ Z

• Take any 1(, , ,)np z w w= ∈

• For each 1..i n∈ , compute the unique proximal decomposition

(,) Graph() :i i i i i i i ix y T x c y L z c w∈ + = + for some 0ic > , hence

1 1

2 2

1 1

(, , ,) ,

1 0

n
n i i i ii

n n
i i i i ii i

i

z w w L z x y w

c y w L z x
c

ϕ
=

= =

= − −

= − = − ≥

∑

∑ ∑

• And if 1(, , ,) 0nz w wϕ = , then i iL z x= and i iw y i= ∀ , so

1(, , ,)nz w w is already in Z since () 1..i i iy T x i n∈ ∀ ∈

Therefore:

• We may strictly separate any 1(, , ,) \np z w w Z= ∈ from Z

• Inequalities of the form 1(, , ,) 0nz w wϕ ≤ fully characterize Z

• Z has to be a closed convex set (can prove in other ways…)

September 2017 6 of 40

Generic Projection Method for a Closed Convex Set Z

This structure suggests that we can use the following general
recipe for finding a point in a closed convex set Z:

• Given kp ∈, find separating hyperplane kH between kp and Z

• Project kp onto nH , possibly with an overrelaxation factor
[,2]kλ ε ε∈ − , giving 1kp + , and repeat…

• Fejér monotone: non-increasing distance to all points in Z

• Separators are “sufficiently deep” ⇒ (weak) convergence to
some point in Z

Z

{ }
 is affine

() 0

() 0
() 0

k

k k

k

k k

H p p

p p Z
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>

1kp +

kp

September 2017 7 of 40

One Way to Use this Idea (Similar to E and Svaiter 2009)

Here is one possible algorithm, for fixed min max0 c c< ≤

Starting with an arbitrary 0 0 0
1(, , ,)nz w w ∈ :

1. For 1, ,i n= , pick any [], min max,i kc c c∈ and find the unique

, ,(,) Graph() :k k k k k k
i i i i i k i i i k ix y T x c y L z c w∈ + = + (prox operation)

(Decomposition Step)

2. Define 1
1

(, , ,) ,
n

k k
k n i i i i

i
z w w L z x y wϕ

=

= − −∑

3. Compute 1 1 1
1(, , ,)k k k

nz w w+ + + ∈ by projecting 1(, , ,)k k k
nz w w

onto the halfspace 1(, , ,) 0k nz w wϕ ≤
(possibly with some overrelaxation) (Coordination Step)

September 2017 8 of 40

Computing the Projection

Generic formula for projecting p onto { },p a p b≤ :

{ }
2

max , ,0a p b
p p a

a
+

 −
= −

In the case of the halfspace { }() 0kp pϕ∈ ≤ ⊂ ,

()11
proj , , ,n k k k

i ni
a y x x

=
= ∑

• Difference from last talk:
 There could be problems if proj is difficult to compute

• But often it is straightforward

• For example, suppose 0 1 n= = = the iL are all identity
matrices, so the problem is

1
0 ()n

ii
T x

=
∈∑ . Then

() () 1
1 1 1

proj , , , , , , , nk k k k
n n in i

v x x v x x x x x x
=

= − − = ∑ where

September 2017 9 of 40

Making the Method More General

• At each iteration k, we do not process all the operators
1, ,i n= , but just some subset {1, , }kI n⊆

o For the others, we just recycle 1 1(,) (,)k k k k
i i i ix y x y− −=

• We also consider lags:

Find () (
,

)(,) Graph() : k kk k k k
i i i i i

d i
k i i i

d i
ix y T x c y L z c w∈ + = +

where ()kd i k≤ is some possibly earlier iteration.

• We also allow errors
() ()

,(,) Graph() : k kd i d ik k k k
i i i i i k

k
ii i i ix y T x c y L z c w e∈ + ++ =

• Still have valid cuts for Z because (,) Graph() 1..k k
i i ix y T i n∈ ∀ ∈

• But are they sufficiently deep to force convergence to Z ?
In some cases they might not cut off 1(, , ,)k k k

nz w w at all…

September 2017 10 of 40

Full Algorithm (Still Not as General as Previous Talk)

For 1,2,k =

{ }

{ }

() ()
,

1 1

*
1 1 1 1

*
1

1
2

(,) Graph() :
(,) (,) 1.. \

(, ,) proj (, ,) (, ,) 0

max , ,0

Find

, where

k kd i d ik k k k k
i i i i i k i i i i i k

k k k k
i i i i k

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k k

x y T x c y L z c w e i I
x y x y i n I

u u x x w w L w

v L y

L z x y w

v
θ

− −

=

=

=

∈ + = + + ∈
= ∈

= = =

=

− −
=

∑

∑
∑

2

1

1

1

[,2]Pick any

n k
ii

k k k
k k

k k k
i i k k i

u

z z v

w w u i

λ ε ε

λ θ

λ θ

=

+

+

+

∈ −

= −

= − ∀

∑

September 2017 11 of 40

Convergence of the More General Method

The cuts are sufficiently deep (on average) and the method does
converge (weakly) under the following assumptions:

• Quasicyclic control: (there is a bound to how long we can
ignore any given operator) there exists some integer 0M ≥
such that

{1, , } 0
M

k
k

I n
+

=

= ∀ ≥

This control rule borrowed from set intersection methods

• Bounded lags: there exists an integer 0D ≥ such that

max{0, } () 0,k kk D d i k k i I− ≤ ≤ ∀ ≥ ∀ ∈

• Relative error criterion: there exists 0, [0,1[B σ≥ ∈ such that

()
2() ()

2() ()

0, ,

,

k k

k k

d i d ik k k k
k i i i i i i

d i d ik k k
i i i i i

k i I e B e L z x L z x

e y w y w

σ

σ

∀ ≥ ∀ ∈ ≤ − ≥ − −

− ≤ −

September 2017 12 of 40

Implications

This algorithm (and the more general one in the previous talk)
have some unique features among splitting methods

• The sets kI mean that we can adjust the balance between
effort expended solving subproblems (the prox operations) and
the effort expended on coordination

o In most n-way splitting methods, every operator must be
preocessed before you perform a coordination step

• Together, the kI and the lags permit a kind of asynchronous
parallel operation: at each iteration, you process some set of
subproblem calculations that may have been initiated at
earlier iterations.

If the operation proj is problematic, use the more general
method of the previous talk instead

September 2017 13 of 40

An Example Application:
A Non-Random Asynchronous n-Block ADMM-Like Algorithm

Problem, for 1, , nf f closed proper convex:

1

1

min ()

ST

n
i ii

n
i ii

f t

M t b
=

=
=

∑
∑

Dual formulation (assuming standard regularity conditions):

() ()* * * *

1 1
min , 0 ()

n n

i i i i ix i i
f M x x b M f M x b

= =

− + ∈ − ∂ − +∑ ∑

One possible way to apply our algorithm: for any 1 nb b b+ + = ,

()* *() ()i i i i iT x M f M x b i= − ∂ − + ∀

We then use the framework above with Id 1..iL i n= ∀ ∈ and 0k
ie ≡

September 2017 14 of 40

A Non-Random Asynchronous ADMM-Like Algorithm

Workers’ loop: (i ib w− is the “target” value for i iM t)

Wait to receive command (, , ,)iz i w µ from “controller”

{ }
()

2
2Arg min () , ()

()

i i i i i i
t

i i i i i i i i i

t f t z M t M t b w

x z M t b w y b M t

µ

µ

∈ + + − −

= + − − = −

Send (, , ,)i i ii x y t back to controller

• Looks like augmented Lagrangian iteration with multiplier z,
penalty µ , and constraint i i i iM t b w= − , and like ADMM
subproblem

• Many workers operating in parallel, asynchronously

Controller starts with

• 1 1
, , : 0n

n ii
z w w w

=
=∑

• A set max1..ωΩ = of available workers

September 2017 15 of 40

A Non-Random Asynchronous ADMM-Like Algorithm: Controller

“Controller” loop (leaving out iteration indices for simplicity):

While Ω nonempty
 Pick {1, , }i n∈ and remove some ω from Ω (*)
 Pick []min max,µ µ µ∈ and send (, , ,)iz i w µ to ω
Wait for at least one worker to complete a task
For each worker ω with a completed task
 Receive (, , ,)i i ii x y t from ω
 Insert ω into Ω

{ }

1
1 1 1

22

1
[, 2]

max 0, ,

(/)
(/)

arbitrary choice

n n n
i i i i i ini i i

n
ii

i i i

i i i

v y b M t x x u x x i

d v u

z x y w

x x d v
w w d u i

λ ε ε

θ λ

θ
θ

= = =

=

← = − ← ← − ∀

← + ← ∈ −

← − −

← −
← − ∀

∑ ∑ ∑
∑

September 2017 16 of 40

More about the Algorithm, Parallel Implementation

• 2v measures the constraint violation and 2

1

n
ii

u
=∑ measures

the “disagreement” about the dual variables

• The controller algorithm description above assumes a global
memory space

• There is a more general version of the controller that accounts
for partitioned memory: some subsystems i can only be
processed on certain processors

o Details too complicated to show here, but conceptually
similar

• The implementation style is aimed at multicore or HPC
hardware rather than distributed sensor networks etc. on
graphs

• The controller should not have to be a serial bottleneck – the
controller functions may also be distributed

September 2017 17 of 40

Convergence Result

Proposition: In the ADMM-like algorithm above, suppose

• There is a bound on the ratio of the longest to shortest
possible subproblem solution time.

• Once in every 0M > executions of line (*), each possible value
of i is selected at least once

Then z converges to an optimal dual solution and the it are
asymptotically optimal for the primal:

1

n
i ii

M t b
=

→∑ and () opt1
limsup ()n

i ii
f t f

=
≤∑

September 2017 18 of 40

Commentary

Several asynchronous ADMM-like methods have been suggested for
an arbitrary number of blocks n. However, they each have some
combination of the following features:

• They require randomness in the activation of blocks and
convergence is in expectation (not along every sample path?)

• Convergence is ergodic (in the long-term average of the
iterates)

• They require restrictive assumptions about the problem

This new method has “plain” convergence and does not require
randomness or restrictive assumptions (only some standard
convex-analytic regularity)

• We also have huge freedom in choosing the proximal
parameters (stepsizes) inherited from the projective splitting
framework – can vary by both iteration and block

September 2017 19 of 40

A Related Application: Convex Stochastic Programming

• Consider a standard stochastic programming scenario tree:

• iπ is the probability of last-stage scenario i

• Will use “scenario” as a shorthand for “last-stage scenario”

Last-stage scenarios i = 1, … , n

Stages
s = 1,…,T

September 2017 20 of 40

Convex Stochastic Programming

• System walks randomly from the root to some leaf

• At each node there are decision variables, for example

o How much of an investment to buy or sell

o How much to run a power generator, etc...

• ... and constraints that depend on earlier decisions

• Model alternates decisions and uncertainty resolution

Stages
s = 1,…,T

September 2017 21 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

September 2017 22 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

isx

September 2017 23 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables pertaining to scenario i;
elements are 1(, ,)i i iTx x x=

i ix ∈

isx

September 2017 24 of 40

Problem Formulation and Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables for scenario i; elements are
 1(, ,)i i iTx x x=

• 1 n= × × is space of all decision variables; elements are
 ()1 11 1 1(, ,) (, ,), , (, ,)n T n nTx x x x x x x= =

x∈

i ix ∈

isx

September 2017 25 of 40

Problem Formulation and Notation

• i is i without the last stage; elements 1 , 1(, ,)i i i Tz z z −=

• 1 n= × × is the space of all variables except the last
stage: elements ()1 11 1, 1 1 , 1(, ,) (, ,), , (, ,)n T n n Tz z z z z z z− −= =

z∈

i iz ∈

September 2017 26 of 40

Nonanticipativity Subspace

• ⊂ is the subspace of meeting the nonanticipativity
constraints that is jsz z= whenever scenarios i and j are
indistinguishable at stage s

September 2017 27 of 40

Projecting onto the Nonanticipativity Space

• Following Rockafeller and Wets (1991), we use the following
probability-weighted inner product on :

1 1 1
(, ,), (, ,) ,n

n n i i ii
z z q q z qπ

=
=∑

• With this inner product, the projection map proj : → is
given by

()
1 1

(,)
(,)

proj () ,
1 1, , , 1, , 1

 where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑

and (,)S i s is the set of scenarios indistinguishable from
scenario i at time s.

September 2017 28 of 40

Formulation Continued

• : { }i ih → ∪ +∞ is the cost function for scenario i

o Includes all constraints within scenario i
(infeasible points have ()i ih x = +∞)

o Assume that ih is convex

• :i i iM → is the linear map 1 1 , 1(, ,) (, ,)i iT i i Tx x x x −
(just drops last stage from scenario i)

• :M → takes 1 1 1(, ,) (, ,)n n nx x M x M x
(just drops last stage from full decision vector)

We may formulate a convex stochastic program as

1
min ()

ST

n
i i iix
h x

Mx

π
=

∈

∑

September 2017 29 of 40

Formulation Continued

Further define : { }f → ∪ +∞ and : { }g → ∪ +∞ by

•
1

() ()n
i i ii

f x h xπ
=

=∑

•
0,

()
,

z
g z

z
∈

= +∞ ∉

 (the convex indicator function of)

Then our stochastic program is just

min () ()
x

f x g Mx
∈

+

September 2017 30 of 40

Progressive Hedging (Rockafellar and Wets 1991)

• Apply the ADMM (alternating direction method of multipliers)
and obtain, with iterates { } ,{ } ,{ }k k kx z w ⊥⊂ ⊂ ⊂ ,

21

1 1

1 1 1

Arg min () , 1, ,
2

proj ()
()

i

k k k
i i i i i i i i

x

k k

k k k k

x h x M x w M x z i n

z Mx
w w Mx z

ρ

ρ

+

+ +

+ + +

 ∈ + + − =

=
= + −

• Minimize each scenario separately, but with a linear-quadratic
perturbation on all variables except the last stage

• Average the results into a nonanticipative z

• Update Lagrange multiplier estimates w and repeat

• Note: Rockafellar and Wets present a derivation from first
principles, but it is also an application of the ADMM

September 2017 31 of 40

Progressive Hedging is Naturally Parallel…

• The minimization step (subproblem) naturally decomposes by
scenario

• The remaining calculations take comparatively little time and
may also be parallelized (only communication is for the
summations required by proj , and is simple/efficient)

…But Also Naturally Synchronous

• If some scenarios take longer than others, the algorithm
cannot proceed until the slowest one completes

• You must solve all n subproblems between successive
coordination steps

September 2017 32 of 40

Setup to Apply Asynchronous Splitting Method

Problem setup for stochastic programming

• 0 = (run algorithm in nonanticipativity subspace)

• i i= , but with inner product multiplied by iπ

• :i iL → selects the subvector relevant to scenario i

• (){ }() min (,)
iT

i i i i i iTx
f x h x xπ= minimizes scenario i’s cost over the

last-stage variables

o Remember, scenario-infeasible points have ()i ih x = +∞

• Then our stochastic program is just

0
1

min ()n
i iix

f L x
=∈ ∑

• Apply the method from earlier in the talk for *

1
0 ()

n

i i i
i

L T L x
=

∈∑

• Conveniently, it turns out that ⊥= , so ⊥= ×

September 2017 33 of 40

A New, Asynchronous Alternative

Subproblem: (many operating in parallel, asynchronously)

Parameters sent from “controller”:

• 1..i n∈ : which scenario to solve
• 1 , 1(, ,)i i i Tz z z −= : scenario i “target” values, except last stage

• iw : multipliers (same dimensions as iz)

• 0ρ > : scalar penalty parameter

2

1.. , , , 0

Arg min () ,
2

()
, ,

Receive from controller

Return to controller

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

i n z w

x h x M x z M x z

y w M x z
i x M x y

ρ
ρ

ρ

∈ ∈ >

 ∈ + + −

= + −

Looks like progressive hedging subproblem
+ part of multiplier update

September 2017 34 of 40

A New, Asynchronous Alternative: “Controller” Setup

The controller maintains working variables:
• 1(, ,)nz z z= ∈

• 1(, ,)nw w w ⊥= ∈

• 1(, ,)nx x x= ∈
 (the tildes mean no last-stage variables)

• 1(, ,)ny y y= ∈

At each iteration we also compute step direction vectors:
• 1(, ,)nu u u ⊥= ∈

• 1(, ,)nv v v= ∈

Scalar parameters:
• Primal-dual scaling factor 0γ > (improves conditioning; fixed?)
• Subproblem penalty parameters [,], 0ρ ρ ρ ρ ρ∈ < ≤ (varying)

• Overrelaxation factors [,2]λ ε ε∈ − (varying)

September 2017 35 of 40

A New, Asynchronous Alternative: “Controller”

repeat
 while there is a free worker ω do
 Choose a scenario i and [,]ρ ρ ρ∈
 Dispatch , , ,i ii z w ρ to worker ω
 wait for at least one worker to complete its task
 for each worker ω with a completed task
 Receive , ,i ii x y from ω
 proj ()u x x← −
 proj ()v y←
 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑

 () ()1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

 if 0φ > then
 Choose some [,2]λ ε ε∈ −
 (/)z z vγλφ τ← +
 (/)w w uλφ τ← +
until termination detected

September 2017 36 of 40

Partial Resemblance to PH

• Subproblem has recognizable pieces of the PH subproblem
optimization step and multiplier update

• Controller has proj operations

• But otherwise the controller algorithm comes from our
splitting framework

• Unlike progressive hedging, the algorithm runs asynchronously

o Only a single subproblem needs to complete between
cycles of the controller (more is OK too)

• In our description, the controller looks centralized/serial, but
it could be distributed with careful implementation

September 2017 37 of 40

Conclusion / Summary / Ongoing Work

• A general decomposition method for monotone inclusions

• Gives freedom to…

o Strike arbitrary balance between computing and
coordination

o Not have to reevaluate every operator between each pair
of successive coordination steps

o Implement asynchronously without requiring randomness

• Numerous possible applications:

o Asynchronous ADMM-like method without randomness
(shown above)

o Asynchronous stochastic programming decomposition

September 2017 38 of 40

Some Early Computational Results from JP Watson

• Contingency-constrained AC optimal power flow instances

• Two-stage stochastic programs with n scenarios

• We run an asynchronous algorithm essentially the same as
described in this talk (but for stochastic programming)

• Compared to progressive hedging (PH)

• Use n processors, one per scenario (≈ an ADMM block)

• These are very early results, lots left to do

Problem n PH Time Async Time

case6ww 11 0:00:02 0:00:02

case57 79 0:00:12 0:00:09

case118 117 0:02:03 0:01:40

case300 322 0:02:54 0:02:19

September 2017 39 of 40

References Part 1

“The mothership”

• Patrick L. Combettes and Jonathan Eckstein. “Asynchronous
block-iterative primal-dual decomposition methods for
monotone inclusions”. Mathematical Programming, online
July 2016.

September 2017 40 of 40

References Part 2

• Jonathan Eckstein. “A simplified form of block-iterative
operator splitting, and an Asynchronous Algorithm Resembling
the Multi-Block ADMM”.

• Convergence analysis for simplified framework in this talk…

• But weaker initialization conditions than the “mothership”

• And an asynchronous ADMM-like method generalizing the one
in this talk

More realistic applications coming “soon”…

	Asynchronous Parallel Applications of Block-Iterative Splitting

