Accelerated Douglas-Rachford splitting and ADMM for structured nonconvex optimization

Panos Patrinos

KU Leuven (ESAT-STADIUS) joint work with Andreas Themelis and Lorenzo Stella

CMO-BIRS Workshop Splitting Algorithms, Modern Operator Theory and Applications Oaxaca, Mexico

September 18, 2017

A. Themelis, L. Stella and P. Patrinos Douglas–Rachford splitting and ADMM for nonconvex optimization: new convergence results and accelerated versions https://arxiv.org/abs/1709.05747

Structured nonconvex optimization

composite problem

separable problem

minimize $\varphi_1(s) + \varphi_2(s)$

minimize f(x) + g(z)subject to Ax + Bz = b

- templates for large-scale structured optimization
- $\blacktriangleright \ \varphi_1$, φ_2 , f , g can be nonsmooth
- numerous applications
 - machine learning
 - statistics
 - signal/image processing,
 - ► control...
- traditional algorithms usually do not apply

Structured nonconvex optimization

composite problem separable problem

minimize $\varphi_1(s) + \varphi_2(s)$ subject to Ax + Bz = b

- resurgence of proximal algorithms (or operator splitting methods)
- ▶ reduce complex problem into a series of simpler subproblems
- perhaps most popular proximal algorithms

Douglas-Rachford Splitting (DRS) Alternating Direction Method of Multipliers (ADMM)

 elegant, complete theory for convex problems (monotone operators, fixed-point iterations, Fejér sequences...¹)

¹Bauschke H.H. and Combettes P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer 2011

Contribution

composite problem separable problem

minimize $\varphi_1(s) + \varphi_2(s)$

minimize f(x) + g(z)subject to Ax + Bz = b

DRS & ADMM

- ► being fixed point iterations, DRS & ADMM can be agonizingly slow
- nonconvex problems: incomplete theory, results empirical or local^{1,2}
- global results have recently emerged (see next slides)

this talk

 global convergence theory for nonconvex problems based on the Douglas-Rachford Envelope (DRE)
 more importantly, new, robust, faster algorithms

R. Hesse and R. Luke Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM Opt. 23(4) 2013

²F. Artacho, J. Borwein and M. Tam Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems. JOTA 163(1) 2014

Many applications...

- ADMM: amenable for distributed formulations (via consensus)
- Nonconvex problems: no need for convex relaxation rank constraints, 0/Schatten-norms, (mixed-) integer programming

Some examples:

- hybrid system MPC¹
- distributed sparse principal component analysis (SPCA)²
- dictionary learning³
- background-foreground extraction^{4,5}
- ► sparse representations (signal processing)⁶

Takapoui R., Moehle N., Boyd S. and Bemporad A. A simple effective heuristic for embedded mixed-integer quadratic programming. IEEE ACC 2016

²Hajinezhad D. and Hong M. Nonconvex ADMM for distributed sparse principal component analysis. GlobalSIP 2015

³Wai H. T., Chang T. H. and Scaglione A. A consensus-based decentralized algorithm for non-convex optimization with application to dictionary learning. ICASSP 2015

⁴Chartrand R. Nonconvex splitting for regularized low-rank + sparse decomposition. IEEE TSP 2012

⁵Yang L., Pong T. K. and Chen X. ADMM for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM 2017

^DChartrand R. and Wohlberg B. A nonconvex ADMM algorithm for group sparsity with sparse groups. ICASSP 2013

DRS for nonconvex problems

to solve

minimize $\varphi_1(s) + \varphi_2(s)$

starting from $s \in \mathbb{R}^n$, iterate

$$u = \mathbf{prox}_{\gamma\varphi_1}(s)$$
$$v \in \mathbf{prox}_{\gamma\varphi_2}(2u - s)$$
$$s^+ = s + \lambda(v - u)$$

standing assumptions

- 1. φ_1 and φ_2 are *prox-friendly*, however **both can be nonconvex**
- **2.** dom φ_1 is affine and $\nabla \varphi_1$ is Lipschitz on dom φ_1
- φ₂ + ¹/_{2γ} || · ||² is bounded below for some γ > 0 (prox-bounded)
 dom φ₂ ⊆ dom φ₁

Structured Optimization

Tools: proximal map

Only **proximal operations** on φ_1 and φ_2 :

$$\mathbf{prox}_{\gamma h}(s) = \operatorname*{argmin}_{w} \Big\{ h(w) + \frac{1}{2\gamma} \|w - s\|^2 \Big\}, \qquad \gamma > 0$$

▶ a generalized projection: for $h = \delta_C$, $\mathbf{prox}_{\gamma h} = \mathbf{\Pi}_C$

Properties

- well defined for small γ
- Lipschitz for φ_1 (for small γ), but **set-valued** for φ_2
- "prox-friendly" (easily proximable) in many useful applications
- ► the value function is the Moreau envelope

$$h^{\gamma}(s) \coloneqq \min_{w} \left\{ h(w) + \frac{1}{2\gamma} \|w - s\|^2 \right\}$$

 $\blacktriangleright \ h^{\gamma}$ is locally Lipschitz in general, even smooth for convex h

"Integrating" the fixed-point residual

minimize
$$\varphi = \varphi_1 + \varphi_2$$

$$\begin{cases}
u = \mathbf{prox}_{\gamma\varphi_1}(s) \\
v = \mathbf{prox}_{\gamma\varphi_2}(2u - s)
\end{cases}$$

convex nonsmooth case with Douglas-Rachford

- stationary points characterized by u v = 0
- Douglas-Rachford envelope discovered for convex problems¹

$$\varphi_{\gamma}^{\mathrm{DR}}(s) \coloneqq \varphi_{1}^{\gamma}(s) - \gamma \|\nabla \varphi_{1}^{\gamma}(s)\|^{2} + \varphi_{2}^{\gamma}(s - 2\gamma \nabla \varphi_{1}^{\gamma}(s))$$

real-valued function with gradient *proportional* to the DR-residual (for $\varphi_1 \in C^2$, $\gamma < 1/L_{\varphi_1}$)

 $\varphi_{\gamma}^{\mathrm{DR}}(s) = M_{\gamma}(s)(u-v) \qquad M_{\gamma}(s) = I - 2\gamma \nabla^2 \varphi_1^{\gamma}(s) \succ 0$

used to devise accelerated DRS (ADMM via dual²)

¹Patrinos P., Stella L. and Bemporad A. Douglas-Rachford splitting: complexity estimates and accelerated variants. CDC 2014 ²Pejcic I. and Jones C. Accelerated ADMM based on accelerated Douglas-Rachford splitting. ECC 2016

"Integrating" the fixed-point residual

$$\varphi_{\gamma}^{\mathrm{DR}}(s) \coloneqq \varphi_{1}^{\gamma}(s) - \gamma \|\nabla \varphi_{1}^{\gamma}(s)\|^{2} + \varphi_{2}^{\gamma}(s - 2\gamma \nabla \varphi_{1}^{\gamma}(s))$$

lf

- $\varphi_1 : \operatorname{dom} \varphi_1 \to \mathbb{R}$ has L_{φ_1} -Lipschitz gradient
- $\operatorname{dom} \varphi_1$ is affine and contains $\operatorname{dom} \varphi_2$
- no convexity assumptions!

$$\begin{array}{l} \text{then for } \gamma < {}^{1\!/L_{\varphi_{1}}}, \\ \bullet \quad \inf \varphi = \inf \varphi_{\gamma}^{\mathrm{DR}} \\ \bullet \quad s \in \operatorname{argmin} \varphi_{\gamma}^{\mathrm{DR}} \iff \operatorname{prox}_{\gamma\varphi_{1}}(s) \in \operatorname{argmin} \varphi \end{array}$$

Minimizing φ is equivalent to minimizing $\varphi_{\gamma}^{\mathrm{DR}}$

"Integrating" the fixed-point residual

$$\varphi_{\gamma}^{\mathrm{DR}}(s) \coloneqq \varphi_{1}^{\gamma}(s) - \gamma \|\nabla \varphi_{1}^{\gamma}(s)\|^{2} + \varphi_{2}^{\gamma}(s - 2\gamma \nabla \varphi_{1}^{\gamma}(s))$$

lf

- $\varphi_1 : \operatorname{\mathbf{dom}} \varphi_1 \to {\rm I\!R}$ has L_{φ_1} -Lipschitz gradient
- $\operatorname{dom} \varphi_1$ is affine and contains $\operatorname{dom} \varphi_2$
- no convexity assumptions!

$$\begin{array}{l} \text{then for } \gamma < {}^{1\!/\!L_{\varphi_{1}}}, \\ \bullet \quad \inf \varphi = \inf \varphi_{\gamma}^{\mathrm{DR}} \\ \bullet \quad s \in \operatorname{argmin} \varphi_{\gamma}^{\mathrm{DR}} \iff \operatorname{prox}_{\gamma\varphi_{1}}(s) \in \operatorname{argmin} \varphi \\ \end{array}$$

Minimizing φ is equivalent to minimizing $\varphi_{\gamma}^{\mathrm{DR}}$

Notation: for $x \in \operatorname{dom} \varphi_1$, $\tilde{\nabla} \varphi_1(x)$ is the unique in $\operatorname{dom} \varphi_1^{\parallel}$ s.t. $\varphi_1(y) = \varphi_1(x) + \langle \tilde{\nabla} \varphi_1(x), y - x \rangle + o(\|y - x\|^2) \quad y \in \operatorname{dom} \varphi_1$

DRE as an Augmented Lagrangian

► alternative expression

$$\varphi_{\gamma}^{\mathrm{DR}}(s) = \inf_{w \in \mathbb{R}^n} \left\{ \varphi_1(u) + \varphi_2(w) + \langle \tilde{\nabla} \varphi_1(u), w - u \rangle + \frac{1}{2\gamma} \| w - u \|^2 \right\}$$

where $u = \mathbf{prox}_{\gamma \varphi_1}(s)$.

• minimum attained at $v \in \mathbf{prox}_{\gamma g}(2u - s)$:

$$\varphi_{\gamma}^{\mathrm{DR}}(s) = \varphi_1(u) + \varphi_2(v) + \langle \tilde{\nabla}\varphi_1(u), v - u \rangle + \frac{1}{2\gamma} \|v - u\|^2$$

apparently,

$$\varphi_{\gamma}^{\mathrm{DR}}(s) = \mathcal{L}_{\gamma}(u, v, y) \quad \text{for } y = -\tilde{\nabla}\varphi_{1}(u)$$

where \mathcal{L}_{γ} is the **augmented Lagrangian** relative to

minimize $\varphi_1(x) + \varphi_2(z)$ subject to x = z

A new tool for analyzing convergence

Key property: sufficient decrease after one DRS iteration

A new tool for analyzing convergence

Key property: sufficient decrease after one DRS iteration

A new tool for analyzing convergence

Key property: sufficient decrease after one DRS iteration

$$\begin{cases} u = \operatorname{prox}_{\gamma\varphi_1}(s) \\ v \in \operatorname{prox}_{\gamma\varphi_2}(2u-s) \\ s^+ = s + \lambda(v-u) \end{cases} \quad \boxed{\varphi_{\gamma}^{\mathrm{DR}}(s^+) \le \varphi_{\gamma}^{\mathrm{DR}}(s) - c \|u-v\|^2 \quad \exists c = c(\gamma,\lambda) > 0 \end{cases}$$

- ► nonconvex DRS studied only recently, using the DRE
- ▶ only $\lambda = 1$ (plain DRS) and $\lambda = 2$ (PRS) analyzed
- \blacktriangleright bounds on γ based on enforcing $c(\gamma,\lambda)>0$

In this work,

- \blacktriangleright study extended to $\lambda \neq 1,2$
- \blacktriangleright much less conservative upper bound on γ

A new tool for analyzing convergence

Nicer results if we can improve the quadratic lower bound

$$\frac{\sigma_h}{2} \|x - y\|^2 \le h(y) - h(x) - \langle \tilde{\nabla} h(x), y - x \rangle \le \frac{L_h}{2} \|x - y\|^2$$

key inequality: if $\sigma_h \leq 0$, for any $L \geq L_h$ with $L + \sigma_h > 0$ $h(y) \geq h(x) + \langle \tilde{\nabla}h(x), y - x \rangle + \frac{\sigma_h L}{2(L + \sigma_h)} \|y - x\|^2 + \frac{1}{2(L + \sigma_h)} \|\tilde{\nabla}h(y) - \tilde{\nabla}h(x)\|^2$

A new tool for analyzing convergence

Nicer results if we can improve the quadratic lower bound

$$\frac{\sigma_h}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2 \le h(\boldsymbol{y}) - h(\boldsymbol{x}) - \langle \tilde{\nabla} h(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \le \frac{L_h}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2$$

key inequality: if $\sigma_h \leq 0$, for any $L \geq L_h$ with $L + \sigma_h > 0$ $h(y) \geq h(x) + \langle \tilde{\nabla}h(x), y - x \rangle + \frac{\sigma_h L}{2(L + \sigma_h)} \|y - x\|^2 + \frac{1}{2(L + \sigma_h)} \|\tilde{\nabla}h(y) - \tilde{\nabla}h(x)\|^2$

A new tool for analyzing convergence

• $\lambda = 1$: nonconvex DRS first studied by Li & Pong,¹ using the DRE

Range of γ for $\lambda = 1$

new bound much less conservative

- φ_2 plays **no role**
- $\blacktriangleright \ \sigma_{\varphi_1}/L_{\varphi_1} \in [-1,1]$
- ▶ larger $\sigma_{\varphi_1}/L_{\varphi_1} \implies$ larger bound on γ
- ▶ φ₁ "mildly nonconvex": any γ < ¹/L_{φ1} gives decrease
- can always use $\gamma < 1/(2L_{\varphi_1})$

¹Li G. and Pong T.K. **Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems**. Mathematical Programming 2016

A new tool for analyzing convergence

- $\blacktriangleright \ \lambda = 1:$ nonconvex DRS first studied by Li & Pong, ^1 using the DRE
- ► $\lambda = 2$: nonconvex PRS studied by Li, Liu & Pong,² using the DRE new bound much less conservative

Range of γ for $\lambda = 2$ (PRS)

- φ₂ plays no role
- can even choose $2 < \lambda < 4$!

¹Li G. and Pong T.K. Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Mathematical Programming 2016

²Li G., Liu T. and Pong T.K. Peaceman-Rachford splitting for a class of nonconvex optimization problems. Computational Optimization and Applications 2017

Regularity

- \blacktriangleright if φ_1 is C^2 and φ_2 is convex, the DRE is C^1
- \blacktriangleright for nonconvex $\varphi_1,\,\varphi_2,$ although not diff.ble, the DRE is locally Lipschitz

Furthermore, under mild conditions

- \blacktriangleright it is C^1 around minima
- ▶ and even twice diff.ble there!

The DRE leads to **novel fast DRS-based algorithms** for minimizing φ (this talk)

A Lyapunov function for globalizing convergence

 $\begin{array}{ll} \text{Choose } \lambda, \gamma \text{ ensuring sufficient decrease, } 0 < \sigma < c(\gamma, \lambda), \text{ and } s \in \mathbb{R}^n \\ 1: \ u \leftarrow \mathbf{prox}_{\gamma\varphi_1}(s) \\ 2: \ v \leftarrow \mathbf{prox}_{\gamma\varphi_2}(2u-s) \\ 3: \ \text{Compute a direction } d \in \mathbf{dom} \, \varphi_1^{\parallel} \text{ and set } \tau \leftarrow 1 \\ 4: \ s^+ \leftarrow s + (1-\tau)\lambda(v-u) + \tau d \\ 5: \ \text{if } \ \varphi_{\gamma}^{\mathrm{DR}}(s^+) \leq \varphi_{\gamma}^{\mathrm{DR}}(s) - \sigma \|v-u\|^2 \ \text{ then} \\ 6: \ \text{ set } s \leftarrow s^+ \text{ and go to step } 1. \\ \textbf{else} \\ 7: \ \text{ set } \tau \leftarrow \tau/2 \text{ and go to step } 4. \end{array}$

- ▶ step taken along convex combination of DR and custom directions
- ► continuity of φ_{γ} + suff. decrease of DR direction ⇒ condition at step 5 passed for τ small enough

The DRE

- ► globalizes convergence for any d
- ► favors fast directions, thanks to local properties of the DRE

A Lyapunov function for globalizing convergence

Convergence result

Suppose that the standing assumptions hold and γ , λ are s.t. $c(\gamma, \lambda) > 0$.

- 1. the sequence of DR-residuals $(\|v^k u^k\|)_{k \in \mathbb{N}}$ is square-summable.
- 2. all cluster points of $(u^k)_{k\in\mathbb{N}}$, $(v^k)_{k\in\mathbb{N}}$ are stationary for φ
- \blacktriangleright result holds for *any* sequence of directions in dom f^{\parallel}
- under extra mild assumptions (coercivity, KL property): convergence of entire sequence, linear convergence

Examples of directions

$$s^{+} = s + \underbrace{(1 - \tau)\lambda(v - u) + \tau d}_{\text{convex combination}}$$

Key idea: d selected as fast direction for nonlinear equation

 $R_{\gamma}(s) = 0$

where $R_{\gamma}(s) = v - u$ is the DR-residual.

- \blacktriangleright If d are "fast", eventually $\tau=1$ when close to solution
- ▶ and algorithm reduces to the "fast" scheme $s^+ = s + d$.

Examples of directions

$$s^{+} = s + \underbrace{(1 - \tau)\lambda(v - u) + \tau d}_{\text{convex combination}}$$

Possible choices:

Newton-type directions

$$d = -HR_{\gamma}(s), \qquad H \text{ is } n \times n \text{ matrix}$$

- ▶ quasi-Newton (BFGS, Broyden...): only linear algebra
- Iimited-memory quasi-Newton (L-BFGS): only scalar products
- ► Nesterov-type acceleration (next slide): negligible operations

All such directions are **feasible**: $d \in \mathbf{dom} \varphi_1^{\parallel}$

Examples of directions

$$s^{+} = s + \underbrace{(1 - \tau)\lambda(v - u) + \tau d}_{\text{convex combination}}$$

Nesterov-like acceleration:

$$d = \lambda(v-u) + \underbrace{\frac{k-1}{k+2}(w^+ - w)}_{k+2} \quad \text{where } w^+ = s + \lambda(v-u)$$

- whenever $\tau = 1$ is accepted, iteration becomes Accelerated DRS¹
- φ_1 convex quadratic, φ_2 convex $\implies O(1/k^2)$ rate
- $\blacktriangleright~v$ and/or φ_2 nonconvex: no guarantee of acceleration
- but algorithm is globally convergent
- in practice, when φ_1 is not concave it seems we have acceleration

Patrinos P., Stella L. and Bemporad A. Douglas-Rachford splitting: Complexity estimates and accelerated variants. 53rd IEEE CDC, 2014.

Superlinear convergence

Superlinear convergence result

Suppose that the basic assumptions hold and that

- 1. $(u^k)_{k\in\mathbb{N}}$ converges to a strong local minimum u^\star of φ
- **2.** φ_1 is C^2 around u^{\star}
- 3. φ_2 is prox-regular at u^* for $-\tilde{\nabla}\varphi_1(u^*)$, and has generalized quadratic second-order epiderivative.

If the directions satisfy the Dennis-Moré condition (e.g., Broyden)

$$\lim_{k \to \infty} \frac{v^k - u^k + JR_{\gamma}(s_\star)d^k}{\|d^k\|} = 0,$$

 s_{\star} being the limit point of s^k , then

- unit stepsize $\tau_k = 1$ is eventually always accepted, and
- ▶ the sequence $(s^k)_{k \in \mathbb{N}}$ converges superlinearly to s^* .

Separable problems

- ► ADMM first interpreted DRS on the dual (Eckstein & Bertsekas)
- No convexity: we interpret ADMM as DRS on the primal

minimize f(x) + g(z)subject to Ax + Bz = b

► rewrite as

$$\begin{array}{l} \underset{x,z,s}{\text{minimize}} \quad f(x) + g(z) \\ \text{subject to} \quad Ax = b - s, Bz = s \end{array}$$

• minimizing first with respect to x, z

$$\underset{s}{\mathbf{minimize}} \quad (Af)(b-s) + (Bg)(s)$$

where

$$(Lh)(s) = \inf_{x} \left\{ h(x) \mid Lx = s \right\}$$

is the image function

ADMM & DRS

separable problem

image formulation

minimize f(x) + g(z) minimize $\underbrace{(Bg)(s)}_{\varphi_1(s)} + \underbrace{(Af)(b-s)}_{\varphi_2(s)}$ subject to Ax + Bz = b

apply DRS to equivalent image formulation

$$\text{(update order shifted)} \begin{cases} v^+ \in \mathbf{prox}_{\gamma\varphi_2}(2u-s)\\ s^+ = s + v^+ - u\\ u^+ = \mathbf{prox}_{\gamma\varphi_1}(s^+) \end{cases}$$

use proximal calculus rules

$$\begin{split} v^+ &= b - Ax^+ \quad \text{where} \quad x^+ \in \mathbf{argmin}_x \Big\{ f(x) + \frac{1}{2\gamma} \|Ax - b + s\|^2 \Big\} \\ u^+ &= Bz^+ \qquad \text{where} \quad z^+ \in \mathbf{argmin}_z \Big\{ g(z) + \frac{1}{2\gamma} \|Bz - s\|^2 \Big\} \end{split}$$

introduce

$$y = -\tilde{\nabla}\varphi_1(v) = \gamma^{-1}(Bz - s)$$

and eliminate s...

ADMM & DRS

separable problem

image formulation

minimize f(x) + g(z) minimize (Bg)(s) + (Af)(b-s)subject to Ax + Bz = b $\varphi_{1}(s)$ $\varphi_{2}(s)$

▶ ... to arrive at ADMM

$$\begin{cases} x^+ = \operatorname{argmin}_x \mathcal{L}_\beta(x, z, y) \\ z^+ = \operatorname{argmin}_z \mathcal{L}_\beta(x^+, z, y) \\ y^+ = y + \beta(Ax^+ + Bz^+ - b) \end{cases}$$

 \blacktriangleright where $\beta=1/\gamma$ and

$$\mathcal{L}_{\beta}(x,z,y) = f(x) + g(z) + \langle y, Ax + Bz - b \rangle + \frac{\beta}{2} ||Ax + Bz - b||^2$$

is the augmented Lagrangian

ADMM & DRS

separable problem

image formulation

 $\begin{array}{lll} \mbox{minimize} & f(x) + g(z) & \mbox{minimize} & \underline{(Bg)(s)} + \underline{(Af)(b-s)} \\ \mbox{subject to} & Ax + Bz = b & & \\ \end{array}$

▶ equivalence between DRE and augmented Lagrangian

$$\varphi_{1/\beta}^{\mathrm{DR}}(s) = \mathcal{L}_{\beta}(x, z, y) \quad \text{for } \begin{cases} x \in \operatorname{argmin}_{x} \left\{ f(x) + \frac{\beta}{2} \|Ax + s - b\|^{2} \right\} \\ y = \beta(Bz - s) \\ z \in \operatorname{argmin}_{z} \mathcal{L}_{\beta}(x, z, y) \end{cases}$$

 \blacktriangleright sufficient decrease on DRE becomes (for simplicity, $\lambda=1)$

$$\mathcal{L}_{\beta}(x^{+}, z^{+}, y^{+}) \leq \mathcal{L}_{\beta}(x, z, y) - c \|Ax + Bz - b\|^{2}$$

for ADMM updates
$$\begin{cases} x^{+} = \operatorname{argmin}_{x} \mathcal{L}_{\beta}(x, z, y) \\ z^{+} = \operatorname{argmin}_{z} \mathcal{L}_{\beta}(x^{+}, z, y) \\ y^{+} = y + \beta(Ax^{+} + Bz^{+} - b) \end{cases}$$

ADMM-LS

Choose β large enough ensuring sufficient decrease, $0 < \sigma < c(\beta)$ 1: Compute a direction $d \in B \operatorname{dom} g^{\parallel}$ and set $\tau \leftarrow 1$ 2: $y^{+/2} \leftarrow y - \beta \tau (Ax + Bz - b + d)$ 3: $z^+ \leftarrow \operatorname{argmin}_z \mathcal{L}_\beta(x, z, y^{1/2})$ 4: $y^+ \leftarrow y^{+/2} + \beta (Ax + Bz^+ - b)$ 5: $x^+ \leftarrow \operatorname{argmin}_x \mathcal{L}_\beta(x, z^+, y^+)$ 6: if $\mathcal{L}_\beta(x^+, z^+, y^+) \leq \mathcal{L}_\beta(x, z, y) - \sigma ||Ax + Bz - b||^2$ then 7: set $x \leftarrow x^+, z \leftarrow z^+, y \leftarrow y^+$ and go to step 1. else 8: set $\tau \leftarrow \tau/2$ and go to step 2.

- algorithm is DRLS applied to image formulation
- ▶ $\tau = 0 \implies$ only steps 3,4,5 needed: algorithm equivalent to ADMM (after update order shift)

Convergence result

Suppose that

- **1.** $B \operatorname{dom} g \supseteq b A \operatorname{dom} f$
- **2.** (Bg) is Lipschitz smooth on $B \operatorname{dom} g$ (see next slide)
- 3. ADMM subproblems level bounded wrt minimization variable

4.
$$\beta$$
 is s.t. $c(\beta) > 0$ (always exists)

Then

- **1.** square-summable ADMM-residuals $(||Ax^k + Bz^k b||)_{k \in \mathbb{N}}$
- 2. all cluster points of $(x^k,z^k,y^k)_{k\in\mathbb{N}}$ satisfy KKT

$$0 \in \partial f(x^{\star}) + A^{\top}y^{\star}, \ 0 \in \partial f(z^{\star}) + B^{\top}y^{\star}, \ Ax^{\star} + Bz^{\star} = b$$

much less restrictive than existing results (see next slides)

Sufficient conditions for

$$\varphi_1(s) = \inf_z \left\{ g(z) \mid Bz = s \right\}$$

to be Lipschitz smooth on its domain: \boldsymbol{g} Lipschitz smooth and

► *B* full column rank: choose

$$\beta > 2L_{\varphi_1}$$
 where $L_{\varphi_1} = \frac{L_g}{\lambda_{\min}(B^\top B)}$

• g convex, B full row rank: choose

$$\beta > L_{\varphi_1}$$
 where $L_{\varphi_1} = \frac{L_g}{\lambda_{\min}(BB^{\top})}$

▶ $z(s) = \operatorname{argmin}_{z} \{g(z) \mid Bz = s\}$ is Lipschitz on $B \operatorname{dom} g^1$

standing assumption in Wang, Yin, Zeng (2015), for both z(s) and $x(s) = \operatorname{argmin}_x \{f(x) \mid Ax = b - s\}$

Sufficient conditions for

$$\varphi_1(s) = \inf_z \left\{ g(z) \mid Bz = s \right\}$$

to be Lipschitz smooth on its domain: alternatively,

▶ g "B-smooth":

$$|\langle \tilde{\nabla}g(x) - \tilde{\nabla}g(y), x - y \rangle| \le L_{g,B} ||B(x - y)||^2$$

only for x, y such that $\tilde{\nabla}g(x), \tilde{\nabla}g(y) \in \operatorname{\mathbf{range}} B^{\top}$ In any case, L_{φ_1} can be retrieved adaptively!

Comparisons (bringing all under the same framework...)

Ours	Hong et al. ²	Li and Pong ⁴	Wang et al. ⁵	Gonçalves et al. ⁶
	$f \operatorname{cvx}$ or smooth			
$g\ ``B$ -smooth"	∇g Lipsch.	∇g Lipsch.	∇g Lipsch.	$\Pi_{B^{\top}} \nabla g \text{ Lipsch.}$
$\mathbf{dom}g$ affine		$g \in C^2$		$g \log C^2$
x(s) loc. bound.	A = I	\boldsymbol{A} full row rank	x(s) Lipsch.	
\mathcal{L}_{eta} level bound. in z	B full col. rank	B = I	z(s) Lipsch.	B full col. rank

 $x(s) = \operatorname{\mathbf{argmin}}_x \left\{ f(x) \mid Ax = s \right\} \quad \text{and} \quad z(s) = \operatorname{\mathbf{argmin}}_z \left\{ g(z) \mid Bz = s \right\}$

Notice that

- A full column rank \Rightarrow x(s) Lipschitz \Rightarrow x(s) locally bounded
- ▶ B full column rank \Rightarrow z(s) Lipschitz & \mathcal{L}_{β} level bounded in z

³M. Hong, Z. Luo and M. Razaviyayn Convergence Analysis of Alternating Direction Method of Multipliers for a Family of Nonconvex Problems SIAM Opt. 26(1) 2016

 ⁴G. Li and T.K. Pong Global Convergence of Splitting Methods for Nonconvex Composite Optimization. SIAM Opt. 25(4) 2015
 ⁵Y. Wang, W. Yin and J. Zeng Global Convergence of ADMM in Nonconvex Nonsmooth Optimization arXiv:1511.06324 2015
 ⁶M. Gonçalves, J. Melo and R. Monteiro Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems arXiv:1702.01850 2017

Comparisons (bringing all under the same framework...)

³M. Hong, Z. Luo and M. Razaviyayn Convergence Analysis of Alternating Direction Method of Multipliers for a Family of Nonconvex Problems SIAM Opt. 26(1) 2016

 ⁴G. Li and T.K. Pong Global Convergence of Splitting Methods for Nonconvex Composite Optimization. SIAM Opt. 25(4) 2015
 ⁵Y. Wang, W. Yin and J. Zeng Global Convergence of ADMM in Nonconvex Nonsmooth Optimization arXiv:1511.06324 2015
 ⁶M. Gonçalves, J. Melo and R. Monteiro Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems arXiv:1702.01850 2017

Matrix decomposition

Split a signal S into a sparse X and low-rank Y:

minimize
$$\frac{1}{2} \|X + Y - S\|^2 + \lambda \|X\|_0$$

subject to rank $(Y) \le r$

Example: separate foreground objects from background in a sequence of video frames

- $\blacktriangleright~S$ is a matrix where each column is a video frame
- \blacktriangleright the background is mainly constant over time $\Rightarrow Y$ low rank
- foreground moving objects $\Rightarrow X$ sparse

Examples

- $\blacktriangleright~S$ contains $100~{\rm frames}$ from the ${\it ShoppingMall}$ dataset
- $r = 1, \lambda = 5 \cdot 10^{-3}$, 8192000 variables

Cost achieved: DRS = $4.1330 \cdot 10^3$, A-DRS = $4.1118 \cdot 10^3$, **DR-LBFGS =** $4.0556 \cdot 10^3$

Sparse PCA

maximize $\langle x, \Sigma x \rangle$ subject to $||x||_2 = 1$, $||x||_0 \le k$

- $\blacktriangleright \ \boldsymbol{\Sigma} = \boldsymbol{A}^\top \boldsymbol{A}$ covariance matrix of data matrix $\boldsymbol{A} \in {\rm I\!R}^{m \times n}$
- \blacktriangleright explain as much variability in data by using only $k \ll n$ variables
- DRLS is readily applicable
- $f(x) = -\langle x, \Sigma x \rangle$ nonconvex (concave)
- ▶ g models intersection of unit ℓ_2 sphere with ℓ_0 ball (nonconvex)

Sparse PCA example

SPCA path

centralized SPCA formulation

minimize
$$- ||Az||_2^2$$

subject to $||z||_2 = 1$, $||z||_0 \le k$

distributed SPCA formulation: introduce copies of x_1, \ldots, x_N of z

minimize
$$\sum_{i=1}^{N} \underbrace{-\|A_i x_i\|_2^2}_{i=1} + g(z)$$

subject to $x_i = z$

the problem is in ADMM form

- \blacktriangleright data is distributed across different agents/workers or A is huge
- ▶ each term $\frac{1}{2} ||A_i x_i||^2$ can be prox-ed separately
- ▶ no exchange of data A_i occurs, only variables

Consensus SPCA: example

- \blacktriangleright each $A \in {\rm I\!R}^{m \times n}$ sparse, randomly generated
- ▶ n = 100,000 features, m = 50,000 data points
- \blacktriangleright rows are split into N subsets

Computing prox of $-||A_i x_i||^2$ requires factoring (once)

$$I - \gamma A_i A_i^\top \in \mathbb{R}^{m_i \times m_i}$$

- Cholesky factorization (*e.g.*, using ldlchol) $O(m_i^3)$
- N = 50 workers $\Rightarrow m_i = 1,000, \approx 0.03$ seconds
- N = 5 workers $\Rightarrow m_i = 10,000$, ≈ 7 seconds

•
$$N = 1$$
 workers $\Rightarrow m_1 = m = 50,000$, > 1 hour

*reached maximum number of iterations

*reached maximum number of iterations

H.H. Bauschke and P.L. Combettes.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, 2011.

M. L. N. Goncalves, J. G. Melo, and R. D. C. Monteiro.

Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems.

ArXiv e-prints, February 2017.

Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn.

Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. *SIAM Journal on Optimization*, 26(1):337–364, 2016.

G. Li, T. Liu, and T.K. Pong.

Peaceman–Rachford splitting for a class of nonconvex optimization problems. *Computational Optimization and Applications*, pages 1–30, 2017.

G. Li and T.K. Pong.

Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Mathematical Programming, 159(1):371–401, 2016.

Guoyin Li and Ting Kei Pong.

Global convergence of splitting methods for nonconvex composite optimization. *SIAM Journal on Optimization*, 25(4):2434–2460, 2015.

P. Patrinos, L. Stella, and A. Bemporad.

Douglas–Rachford splitting: Complexity estimates and accelerated variants. In 53rd IEEE Conference on Decision and Control, pages 4234–4239, Dec 2014.

A. Themelis, L. Stella, and P. Patrinos.

Douglas-Rachford splitting and ADMM for nonconvex optimization: new convergence results and accelerated versions. arXiv, 2017.

Y. Wang, W. Yin, and J. Zeng.

Global convergence of ADMM in nonconvex nonsmooth optimization. *ArXiv e-prints*, November 2015.