Quantum Walking in Curved Spacetime

Pablo Arrighi

Joint work with S. Facchini, M. Forets.

[PA, S. Facchini, M. Forets, *"Quantum Walking in Curved Spacetime"*, QINP, arXiv:1505.07023] [PA, S. Facchini, *"Quantum Walking in Curved Spacetime: 3+1-dimensions, and beyond"*, QIC, arXiv:1609.00305]

What's in the tin?

A stable numerical scheme for PDEs of the form

$$i\partial_0 \psi = H\psi$$

$$H = i \sum_{k=1...d} \left(B_k \partial_k + \frac{1}{2} \partial_k B_k \right) - C$$

(with $B_k, C \in \operatorname{Herm}(\mathbb{C})$ and $|B_k| \leq 1$)

implementable by applying unitary matrices locally *i.e.* by future quantum simulation devices.

Discretize physics?

Cellular Automata

An old CompSci dream : to capture physics in this formalism.

Discretize physics?

... as Cellular Automata / Quantum Walks

Theorems about : the extent in which physics particles can be captured in this formalism.

Discretize particules

Dirac equation

$$\mathrm{i}\partial_0\psi = D\psi, \quad \mathrm{with} \quad D = m\alpha^0 - \mathrm{i}\sum_j \alpha^j\partial_j$$

VS

Chess game

Chess game : neutrino

To the right

Chess game : neutrino

To the right

To the left

Chess game : neutrino

To the right

To the left

Amplitudes

 $|\alpha|^2 + |\beta|^2 = 1$

time	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$ \left(\begin{array}{c} 0\\ 0\end{array}\right) $	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$
	$\left(\begin{array}{c} 0\\\beta\end{array}\right)$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\left(\begin{array}{c} \alpha \\ 0 \end{array}\right)$
	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\left(\begin{array}{c} 0\\\beta\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c} \alpha \\ 0 \end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$
	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\left(\begin{array}{c} \alpha\\ \beta\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$
	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\left(\begin{array}{c} \alpha \\ 0 \end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c} 0\\\beta\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$

Rotations $C = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$ $c = cos(\theta)$ $s = sin(\theta)$ $\theta = m.\epsilon$ m = mass $\epsilon = step$

ume	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$		$\left(\begin{array}{c} 0\\ 0\end{array}\right)$		$\left(\begin{array}{c}0\\0\end{array}\right)$
	$\begin{pmatrix} -cs^2 \\ c^2s \end{pmatrix}$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$ \begin{pmatrix} -2cs^2 \\ -s^3 + c^2s \end{pmatrix} $	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\begin{pmatrix} c^3 \\ c^2 s \end{pmatrix}$
	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\begin{pmatrix} -s^2 \\ cs \end{pmatrix}$	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\begin{pmatrix} c^2 \\ cs \end{pmatrix}$	$\left(\begin{array}{c}0\\0\end{array}\right)$
	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	(c) s)	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$
	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c}1\\0\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$	$\left(\begin{array}{c}0\\0\end{array}\right)$

Expand

Consistency vs convergence

Consistency vs convergence

Consistency vs convergence

free, and so convergence is for free, too.

Discretize physics?

Cellular Automata / Quantum Walks

Theorems about : the extent in which Curved Spacetime can be captured in this formalism.

Curved space : problem 1

From

Curved space : problem 1

То

Curved space : problem 1

Transport term is fixed by 0th order & grid :-((

[Di Molfetta , F. Debbasch, M. E. Brachet, *"Quantum walks as massless Dirac Fermions in curved Space-Time"*, PRA, arXiv:1212.5821]

States

States

States

Curved space : problem 2

Curved space : problem 2

Curved space : problem 2

Tin content

Theorem

A stable numerical scheme for PDEs of the form

$$i\partial_0 \psi = H\psi$$

$$H = i \sum_{k=1...d} \left(B_k \partial_k + \frac{1}{2} \partial_k B_k \right) - C$$

(with $B_k, C \in \operatorname{Herm}(\mathbb{C})$ and $|B_k| \leq 1$)

implementable by applying unitary matrices locally.

Curved space simulations : RW

Curved space simulations : BH

Conclusion

Non-interacting physics particles in curved space-time ...as a Quantum Walk.

The point?

- stable numerical scheme
- quantum simulation device compatible
- to simplify, understand, offer toy models.

OK, but what about symmetries?

Extra 1

Discretize physics?

Cellular Automatas / Quantum Walks

Theorems about : the extent in which the SR notion of time can be captured in this formalism.

Observer at rest

Mm-

Observer at rest

Observer at rest

Uniform observer

Observer at rest 3.10⁸m.s⁻¹ Uniform observer -N/V~ Relativity Both are right. Laws of Physics are the same for uniform observers. Any uniform referential is valid for describing the world,

Lorentz transform

Lorentz transform

Lorentz transform

Theorem : In the continuum limit, this discrete Lorentz transform coincides with the continuous Lorentz transform of the Dirac Equation.

Covariance

Relativity

Laws of Physics are the same for uniform observers. Any uniform referential is valid for describing the world.

Transform(Dirac Equation) = Dirac Equation Transform(Physics Law) = Physics Law

A fundamental symmetry of physics. Can it be discretized?

Covariance

Relativity

Laws of Physics are the same for uniform observers. Any uniform referential is valid for describing the world.

Transform(Dirac Equation) = Dirac Equation Transform(Quantum Walk) = Quantum Walk?

A fundamental symmetry of physics. Can it be discretized?

Covariance

Transform(Quantum Walk) = Quantum Walk?

Discrete covariance

Discrete covariance

Discrete covariance

Indulging into reductionism

Indulging into reductionism

We might leave in a "great quantum circuit".

This great quantum circuit would be equivalent to some others... each of which would be a valid representation of our world.

The notion of time would then be relative to this choice of representation, just like in SR.

Extra 2

0th order

0th order

0th order

0th order

$E^{\dagger}W^{(0)}XE = I \oplus U$

W⁽⁰⁾, that which governs propagation, is non-trivial, and this still has a continuous limit.

1st order

1st order

1st order

$E^{\dagger}W^{(0)}XE=I \oplus U$

Curved space : Dirac Eq.

