Quantum Walking in Curved Spacetime

Pablo Arrighi

Joint work with S. Facchini, M. Forets.

What's in the tin?

A stable numerical scheme for PDEs of the form

$$
i \partial_{0} \psi=H \psi
$$

$$
H=i \sum_{k=1 \ldots d}\left(B_{k} \partial_{k}+\frac{1}{2} \partial_{k} B_{k}\right)-C
$$

$$
\left(\text { with } B_{k}, C \in \operatorname{Herm}(\mathbb{C}) \text { and }\left|B_{k}\right| \leq 1\right)
$$

implementable by applying unitary matrices locally i.e. by future quantum simulation devices.

Discretize physics?

Cellular Automata
An old CompSci dream : to capture physics in this formalism.

Discretize physics?

... as Cellular Automata / Quantum Walks
Theorems about : the extent in which physics particles can be captured in this formalism.

Discretize particules

Dirac equation
$\mathrm{i} \partial_{0} \psi=D \psi, \quad$ with $\quad D=m \alpha^{0}-\mathrm{i} \sum_{j} \alpha^{j} \partial_{j}$
vs

Chess game

Chess game : neutrino

To the right

\&	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$
$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{1}{0}$
$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	1	$\binom{0}{0}$
$\binom{0}{0}$	$\binom{0}{0}$	$\left(\begin{array}{l}1 \\ 0\end{array}\right.$	$\binom{0}{0}$	$\binom{0}{0}$
$\binom{0}{0}$	1	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$

Chess game : neutrino

To the right

$\stackrel{\otimes}{\otimes}\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$
0	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$
$\binom{0}{0}$		$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$
$\binom{0}{0}$	$\binom{0}{0}$		$\binom{0}{0}$	$\binom{0}{0}$
$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$		$\binom{0}{0}$

Chess game : neutrino

To the right

To the left

Amplitudes

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

$\stackrel{\otimes}{ \pm}\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$
$\binom{0}{\beta}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{a}{0}$
$\binom{0}{0}$	$\binom{0}{\beta}$	$\binom{0}{0}$	$\binom{a}{0}$	$\binom{0}{0}$
$\binom{0}{0}$	$\binom{0}{0}$	$\binom{a}{\beta}$	$\binom{0}{0}$	$\binom{0}{0}$
$\binom{0}{0}$	$\binom{a}{0}$	$\binom{0}{0}$	$\binom{0}{\beta}$	$\binom{0}{0}$

Chess game : electron

Rotations
$C=\left(\begin{array}{l}C \\ s\end{array}\right.$
$c=\cos (\theta)$
$s=\sin (\theta)$
$\theta=m . \varepsilon$
$m=$ mass
$\varepsilon=$ step

$\stackrel{\mathbb{1}}{\underset{=}{E}}$	$\binom{0}{0}$	$\binom{\ldots}{\ldots}$	$\binom{0}{0}$	$\left(\begin{array}{l}. \\ \ldots \\ \ldots\end{array}\right)$	$\binom{0}{0}$
	$\binom{-c s^{2}}{c^{2} s}$	$\binom{0}{0}$	$\binom{-2 c s^{2}}{-s^{3}+c^{2} s}$	$\binom{0}{0}$	$\binom{c^{3}}{c^{2} s}$
	$\binom{0}{0}$	$\binom{-s^{2}}{c s}$	$\binom{0}{0}$	$\binom{c^{2}}{c s}$	$\binom{0}{0}$
	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{c}{s}$	$\binom{0}{0}$	$\binom{0}{0}$
	$\binom{0}{0}$	$\binom{1}{0}$	$\binom{0}{0}$	$\binom{0}{0}$	$\binom{0}{0}$

Chess game : electron

Rotations

Chess game : electron

States

Scale

Chess game : electron

Chess game : electron

Expand

Chess game : electron

Order 0

Chess game : electron

Order 0

Chess game : electron

Order 1

$$
d+\varepsilon \partial_{t} d=d+\varepsilon \partial_{x} d+\ldots \quad u+\varepsilon \partial_{t} u=u-\varepsilon \partial_{x} u+\ldots
$$

Chess game : electron

Order 1

Chess game : electron

Order 1

Chess game : electron

Order 1

$$
\begin{aligned}
& C=\left(\begin{array}{ll}
c & -s \\
s & c
\end{array}\right) \quad \partial_{t}\binom{u}{d}=-\sigma_{z} \partial_{x}\binom{u}{d}+W^{(1)}\binom{u}{d} \\
& \mathrm{c}=\cos (\theta) \\
& \mathrm{s}=\sin (\theta) \\
& \theta=m \cdot \varepsilon \\
& \begin{array}{l}
C^{(1)}=-i m \sigma_{y} \\
W=C X
\end{array}
\end{aligned}
$$

Chess game : electron

Rotations

Chess game : electron

Rotations

Consistency vs convergence

Consistency vs convergence

Consistency vs convergence

Theorem

$$
\begin{aligned}
& \forall \psi(0) \in H^{2}, \forall t, \forall \varepsilon: \\
& \quad\left\|W_{\varepsilon}^{\lfloor t / \varepsilon\rfloor} \psi(0)-\psi(t)\right\|_{2}=\varepsilon(5 / 2) t\|\psi(0)\|_{H^{2}}
\end{aligned}
$$

Morale: unitarity gives you stability in Sobolev norm, for free, and so convergence is for free, too.

Discretize physics?

Cellular Automata / Quantum Walks
Theorems about : the extent in which Curved Spacetime can be captured in this formalism.

Curved space : problem 1

From

Curved space : problem 1

To

Curved space : problem 1

Transport term is fixed by $0^{\text {th }}$ order \& grid :-((

Curved space : idea 0

[Di Molfetta , F. Debbasch, M. E. Brachet, "Quantum walks as massless Dirac Fermions in curved Space-Time", PRA, arXiv:1212.5821]

Curved space : idea 0

[Di Molfetta , F. Debbasch, M. E. Brachet, "Quantum walks as massless Dirac Fermions in curved Space-Time", PRA, arXiv:1212.5821]

$$
\partial_{t}\binom{\mathrm{u}}{\mathrm{~d}}=\left(-\sigma_{\mathrm{z}} \partial_{\partial x}\binom{\mathrm{u}}{\mathrm{~d}}\right.
$$

- $1=r=c$
- massless
- $1+1$

Made it

$$
\left(\begin{array}{ll}
-c(x, t) & 0 \\
0 & c(x, t)
\end{array}\right)
$$

Curved space : idea 1

Curved space : idea 1

Curved space : idea 1

States

Curved space : idea 1

States

Curved space : idea 1

States

Curved space : idea 1

Curved space : idea 1

Expand

Curved space : idea 1

$0^{\text {th }}$ order

Curved space : idea 1

$0^{\text {th }}$ order

Curved space : problem 2

$1^{\text {st }}$ order

Curved space : problem 2

$1^{\text {st }}$ order

Curved space : problem 2

$1^{\text {st }}$ order

Curved space : idea 2

Curved space : idea 2

Curved space : idea 2^{w}

Curved space : idea $2^{\text {w }}$

Tin content

Theorem
A stable numerical scheme for PDEs of the form

$$
\begin{aligned}
& \quad \begin{array}{l}
i \partial_{0} \psi=H \psi \\
\quad H=i \sum_{k=1 \ldots d}\left(B_{k} \partial_{k}+\frac{1}{2} \partial_{k} B_{k}\right)-C \\
\left(\text { with } B_{k}, C \in \operatorname{Herm}(\mathbb{C}) \text { and }\left|B_{k}\right| \leq 1\right)
\end{array}
\end{aligned}
$$

implementable by applying unitary matrices locally.

Curved space simulations : RW

Curved space simulations: BH

Conclusion

Non-interacting physics particles in curved space-time ...as a Quantum Walk.

The point?

- stable numerical scheme
- quantum simulation device compatible
- to simplify, understand, offer toy models.

OK, but what about symmetries?

Extra 1

Discretize physics?

Cellular Automatas / Quantum Walks
Theorems about : the extent in which the SR notion of time can be captured in this formalism.

Time in SR

Observer at rest

$$
\begin{aligned}
& \text { Whas wha } \\
& \text { whas }
\end{aligned}
$$

Time in SR

Observer at rest

Time in SR

Observer at rest

Uniform observer

Time in SR

Observer at rest

Uniform observer

Relativity
Both are right.
who Whan

$$
3.10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

Laws of Physics are the same for uniform observers. Any uniform referential is valid for describing the world

Time in SR

Time in SR

Lorentz transform

Lorentz transform

Lorentz transform

Discrete Lorentz transform

Covariance

Relativity
Laws of Physics are the same for uniform observers.
Any uniform referential is valid for describing the world.

Transform(Dirac Equation) = Dirac Equation
Transform(Physics Law) = Physics Law

A fundamental symmetry of physics.
Can it be discretized?

Covariance

Relativity
Laws of Physics are the same for uniform observers.
Any uniform referential is valid for describing the world.

Transform(Dirac Equation) = Dirac Equation
Transform(Quantum Walk) = Quantum Walk?

A fundamental symmetry of physics.
Can it be discretized?

Covariance

Transform(Quantum Walk) = Quantum Walk?

Discrete covariance

Discrete covariance

If

Discrete covariance

If

Then
Theorem :

- The Dirac QW is first-order only discrete-covariant.
- The Clock QCA is discrete-covariant and simulates the Dirac QW.

Indulging into reductionism

Indulging into reductionism

We might leave in a "great quantum circuit".

This great quantum circuit would be equivalent to some others... each of which would be a valid representation of our world.

The notion of time would then be relative to this choice of representation, just like in SR.

Extra 2

Curved space : idea 2

$0^{\text {th }}$ order

Curved space : idea 2

$0^{\text {th }}$ order

Curved space : idea 2

$0^{\text {th }}$ order

Curved space : idea 2

$0^{\text {th }}$ order

$$
E^{\dagger} W^{(0)} X E=I \oplus U
$$

$\mathrm{W}^{(0)}$, that which governs propagation, is non-trivial, and this still has a continuous limit.

Curved space : idea 2

$1^{\text {st }}$ order

Curved space : idea 2

Curved space : idea 2

$1^{\text {st }}$ order

$$
E^{\dagger} W^{(0)} X E=I \oplus U
$$

Curved space : idea 2

$1^{\text {st }}$ order

$$
\begin{aligned}
& u=\psi^{+} \\
& d=\psi^{-} \\
& u^{\prime}=2 \varepsilon \partial_{x} \psi^{-} \\
& d^{\prime}=2 \varepsilon \partial_{x} \psi^{-}
\end{aligned}
$$

$$
x_{-2 u^{-}-2 d^{\prime} u^{\prime} d^{\prime}}
$$

$E^{\dagger} W^{(0)} X E=I \oplus U$
$W^{(0)}$, that which governs propagation, is non-trivial, and this still has a continuous limit.

Some constraints for consistency? Yes, but with non-trivial solutions.

Curved space : Dirac Eq.

