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Complex trajectories in quantum orbits
I Strong-field physics is grounded on trajectories
I Tunnelling trajectories require complex times
I First-principles trajectories require complex positions
I Complex positions change everything
I This has physical implications on the photoelectron spectra
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Ionization in the strong-field approximation

We want to study the ionization of atoms or molecules in a strong,
long-wavelength field, in the ‘optical tunnelling’ regime.
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Why strong fields? Lots of cool stuff!
I Quantum effects beyond the perturbative regime
I High-order harmonic generation
I High-harmonic spectroscopy
I Laser-driven electron diffraction and holography
I Probing atoms and molecules at their own timescales

Corkum & Krausz, Nature Phys 3, 381 (2007)
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N. Suárez et al., Phys. Rev. A 94, 043423 (2016)
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I Tunnelling-plus-trajectory models work really well
I Can we provide a solid backing for them from the Schrödinger

equation?
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Heuristics for trajectories that inside the tunnel

I Ekin = Etot − V (r) < 0 so v2 < 0
I Therefore v = iκ is imaginary
I But I need to cover a real distance ∆x
I So... make ∆t imaginary?

I Or: how can we distil this into something that makes more sense?
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The Strong-Field Approximation

I The simplest approach is to take a single ground state |g〉 ionizing
into a laser-driven continuum:

|ψ(t)〉 = a(t) |g〉
ground state

+
∫

b(p, t)e−
i
2

∫ t
∞(p+A(τ))2dτ |p + A(t)〉

continuum

dp.

I This gives an ionization amplitude in terms of an oscillatory integral.

〈p|ψ(T )〉 =
∫ T

−∞
eiIpt− i

2

∫∞
t (p+A(τ))2dτ 〈p + A(t)|VL|g〉 dt
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To solve this we shift the integration path into the complex plane

Then we localize the integral to the contributions from the saddle points

Phys. Rev. A 93, 043408 (2016) J. Phys. B 49, 105601 (2016) 12 / 32



Trajectories in the Strong-Field Approximation

I This is called the saddle-point approximation. This gives
contributions from a discrete set of saddle points:

〈p|ψ(T )〉 =
∑
ts

√
2π

iS ′′(ts) 〈p + A(ts)|VL|g〉 e
iIpts− i

2

∫∞
ts

(p+A(τ))2dτ
.

I Each contribution represents a trajectory with kinetic action
S = 1

2
∫∞

ts
(p + A(τ))2dτ , ionizing at time ts .

I The starting time ts is complex:

1
2(p + A(ts))2 + Ip = 0

ts

t0

Phys. Rev. A 93, 043408 (2016) J. Phys. B 49, 105601 (2016) 13 / 32



Trajectories in the Strong-Field Approximation

I This is called the saddle-point approximation. This gives
contributions from a discrete set of saddle points:

〈p|ψ(T )〉 =
∑
ts

√
2π

iS ′′(ts) 〈p + A(ts)|VL|g〉 e
iIpts− i

2

∫∞
ts

(p+A(τ))2dτ
.

I Each contribution represents a trajectory with kinetic action
S = 1

2
∫∞

ts
(p + A(τ))2dτ , ionizing at time ts .

I The starting time ts is complex:

1
2(p + A(ts))2 + Ip = 0

ts

t0

Phys. Rev. A 93, 043408 (2016) J. Phys. B 49, 105601 (2016) 13 / 32



Trajectories in the Strong-Field Approximation

I This is called the saddle-point approximation. This gives
contributions from a discrete set of saddle points:

〈p|ψ(T )〉 =
∑
ts

√
2π

iS ′′(ts) 〈p + A(ts)|VL|g〉 e
iIpts− i

2

∫∞
ts

(p+A(τ))2dτ
.

I Each contribution represents a trajectory with kinetic action
S = 1

2
∫∞

ts
(p + A(τ))2dτ , ionizing at time ts .

I The starting time ts is complex:

1
2(p + A(ts))2 + Ip = 0

ts

t0

Phys. Rev. A 93, 043408 (2016) J. Phys. B 49, 105601 (2016) 13 / 32



How can we include the Coulomb potential into this description?

I It would be nice to expand this description to include the Coulomb
interaction with the nucleus. Something like

〈p|ψ(T )〉 ∝ eiIpts−iSC(p,ts ) ?

I This is known as the Coulomb-Corrected SFA. The action splits in
two:

〈p|ψ(T )〉 ∝ eiIpts− i
2

∫ t0
ts

(p+A(τ))2dτ

tunnelling
e−iSC(p,t0)

action on
exact trajectory

.

I Successful at reproducing experiments.
I The extension is by analogy, and the initial conditions are put in by

hand.
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Is there a first-principles way to arrive at this description?

I The action eiIpts− i
2

∫∞
ts

(p+A(τ))2dτ comes from the continuum
wavefunction. If we want to modify the continuum dynamics, we
should do it at this level.

I Semiclassical perturbation theory, in the exponent, gives the
eikonal-Volkov wavefunctions:〈

r
∣∣∣p(EV)(t)

〉
∝ ei(p+A(t))·r

plane
wave

e−
i
2

∫ t
∞(p+A(τ))2dτ

kinetic
action

e−i
∫ t

∞ V (rL(τ ;r,p,t))dτ

Coulomb
correction

I Here rL(τ ; r, k, t) = r +
∫ τ

t (p + A(τ ′))dτ ′ is the laser-driven trajectory
that starts at r and has asymptotic momentum p.

Smirnova, Spanner & Ivanov, Phys. Rev. A 77, 033407 (2008)
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Fencing off the Coulomb singularity

I The eikonal wavefunctions are perturbative in the Coulomb potential
so they can’t get too close to the singularity at r = 0.

I To handle this we fence off the continuum using an artificial boundary.

I Known as Analytical R-Matrix theory.

Torlina & Smirnova, PRA 86, 043408 (2012)
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I We get a similar trajectory language:

〈p|ψ(T )〉 ∝ eiIpts + i
2

∫ ts
T (p+A(τ))2dτ

SFA component
e
−i
∫ T

tκ
U
(∫ τ

ts
p+A(τ ′) dτ ′

)
dτ

Coulomb correction

I Two major differences:
I Trajectory is only laser-driven.

rL(t) =
∫ t

ts

(p + A(τ))dτ

I The TDSE gives us a trajectory that’s real-valued at the entrance to
the tunnel, at the complex ionization time ts .
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full action
−−−−−−−−−−−−−−−−→

fir
st

pr
in

cip
les

←−
−−
−−
−−
−−
−−

SFA CC-SFA

ARM
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What does this mean for the trajectories?

I On the downwards leg to the real time axis, the trajectory becomes
complex, through

∫ ti
ts

(p + A(τ))dτ .

ts

t0

I The electron then needs to get from negative z to positive z , avoiding
the Coulomb singularity.
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I This is important, because the Coulomb potential’s singularity...

has a tail:

I Question: where is this singularity in the complex plane, and do we
need to be careful to avoid it?
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Where is the singularity?

zL(t) =
∫ t

ts
(pz + A(τ))dτ ,

√
r2 =

√
x2 + y2 + z2.
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... and how can we avoid it?

I This is a saddle point of
√

rL(t)2 ←→ also of rL(t)2.

d
dt rL(t)2 = 0 ⇐⇒ rL(t) ·v(t) = 0 ←→

I These are the times of closest approach to the ion
(...in complex space.)
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Slalom!
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This directly impacts the photoelectron spectrum
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These are low-energy structures

Pullen et al, J Phys B 47, 204010 (2014)
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What does this tell us about Near-Zero Energy structures?
I There are two mirror-image families of soft-recollision trajectories

I They should both have similar effects on the photoelectron spectrum
I They scale very different with intensity and wavelength:

pz ∼
2zquiv

3
2T

∼ F
ω

vs pz ∼
zexit
T ∼ Ipω

F
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Other uses: enhancement at fast recollisions
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What does this tell us about trajectories after tunnelling?
I You can indeed ground the trajectory models in the Schrödinger

equation.
I Tunnelling is weirder than we thought. Time is complex, and so is the

position.
I The complex component of the position directly impacts the

tunnelling amplitudes
I It also forces you to keep on your toes and be careful with how you

navigate. The most comfortable contour is not always allowed.
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Thank you!
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Saddle-point geometry
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