Slalom in complex time:
 semiclassical trajectories in strong-field ionization and their analytical continuations

Emilio Pisanty
ICFO - The Institute of Photonic Sciences
Barcelona, Spain

Misha Ivanov

Lisa Torlina, Olga Smirnova

Maciej Lewenstein, Noslen Rojas

Imperial College London

 Sciences

In memoriam

Dr. Gilberto Flores

Dr. Antonmaría Minzoni

Complex trajectories in quantum orbits

- Strong-field physics is grounded on trajectories
- Tunnelling trajectories require complex times
- First-principles trajectories require complex positions
- Complex positions change everything
- This has physical implications on the photoelectron spectra

Complex trajectories in quantum orbits

- Strong-field physics is grounded on trajectories
- Tunnelling trajectories require complex times
- First-principles trajectories require complex positions
- Complex positions change everything
- This has physical implications on the photoelectron spectra

Complex trajectories in quantum orbits

- Strong-field physics is grounded on trajectories
- Tunnelling trajectories require complex times
- First-principles trajectories require complex positions
- Complex positions change everything
- This has physical implications on the photoelectron spectra

Complex trajectories in quantum orbits

- Strong-field physics is grounded on trajectories
- Tunnelling trajectories require complex times
- First-principles trajectories require complex positions
- Complex positions change everything
- This has physical implications on the photoelectron spectra

Complex trajectories in quantum orbits

- Strong-field physics is grounded on trajectories
- Tunnelling trajectories require complex times
- First-principles trajectories require complex positions
- Complex positions change everything
- This has physical implications on the photoelectron spectra

Ionization in the strong-field approximation

We want to study the ionization of atoms or molecules in a strong, long-wavelength field, in the 'optical tunnelling' regime.

Why strong fields? Lots of cool stuff!

- Quantum effects beyond the perturbative regime
- High-order harmonic generation
- High-harmonic spectroscopy
- Laser-driven electron diffraction and holography
- Probing atoms and molecules at their own timescales

Why strong fields? Lots of cool stuff!

- Quantum effects beyond the perturbative regime
- High-order harmonic generation
- High-harmonic spectroscopy
- Laser-driven electron diffraction and holography
- Probing atoms and molecules at their own timescales

Corkum \& Krausz, Nature Phys 3, 381 (2007)

N. Suárez et al., Phys. Rev. A 94, 043423 (2016)

Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms

Adrian N. Pfeiffer ${ }^{1 \star}$, Claudio Cirelli ${ }^{1}$, Mathias Smolarski ${ }^{1}$, Darko Dimitrovski ${ }^{2 \star}$, Mahmoud Abu-samha², Lars Bojer Madsen ${ }^{2}$ and Ursula Keller ${ }^{1}$

In the research area of strong-laser-field interactions and attosecond science, tunnelling of an electron through the barrier formed by the electric field of the laser and the atomic potential is typically assumed to be the initial key process that triggers subsequent dynamics ${ }^{1-3}$. Here we use the attoclock technique ${ }^{4}$ to obtain experimental information about the electron tunnelling geometry (the natural coordinates of the tunnelling current flow) and exit point. We confirm vanishing tunnelling delay time, show the importance of the
propagation of the liberated electron, the instant of ionization can be mapped to the angle of the final momentum of the electron in the polarization plane, measured with cold target recoil ion momentum spectroscopy 18 (Fig. 2).

Here, we use the attoclock to measure the offset angle θ (defined in Fig. 3) that is directly related to the complex parent ion interaction and therefore extremely sensitive to the exact tunnel geometry. The attoclock cycle, the time zero (that is, the direction of the maximum laser field vector) and the exact time evolution

Adrian N .
Mahmoud

In the resea attosecond barrier form atomic poter process that attoclock tec the electron of the tunne vanishing tur

Interpreting attoclock measurements of tunnelling times

Lisa Torlina ${ }^{1 \dagger}$, Felipe Morales ${ }^{1 \dagger}$, Jivesh Kaushal ${ }^{1}$, Igor Ivanov ${ }^{2}$, Anatoli Kheifets ${ }^{2}$, Alejandro Zielinski ${ }^{3}$, Armin Scrinzi ${ }^{3}$, Harm Geert Muller ${ }^{1}$, Suren Sukiasyan ${ }^{4}$, Misha Ivanov ${ }^{1,4,5}$ and Olga Smirnova ${ }^{1 \star}$

Resolving in time the dynamics of light absorption by atoms and molecules, and the electronic rearrangement this induces, is among the most challenging goals of attosecond spectroscopy. The attoclock is an elegant approach to this problem, which encodes ionization times in the strong-field regime. However, the accurate reconstruction of these times from experimental data presents a formidable theoretical task. Here, we solve this problem by combining analytical theory with ab initio numerical simulations. We apply our theory to numerical attoclock experiments on the hydrogen atom to extract ionization time delays and analyse their nature. Strong-field ionization is often viewed as optical tunnelling through the barrier created by the field and the core potential. We show that, in the hydrogen atom, optical tunnelling is instantaneous. We also show how calibrating the attoclock using the hydrogen atom opens the way to identifying possible delays associated with multielectron dynamics during strong-field ionization.

```
LETTERS

\section*{nature \\ physics}

\section*{ARTICLES}

PUBLISHED ONLINE: 25 MAY 2015 | DOI: 10.1038/NPHYS3340
Adrian N.
Mahmoud
In the resea attosecond s barrier form atomic poter process that attoclock tec the electron of the tunne vanishing tur
\[
\begin{array}{llllll}
\text { Interp } & & & & & \\
\text { tunne } & \text { PRL 119, } 023201 \text { (2017) } & \text { PHYSICAL REVIEW LETTERS } & \text { weck ending } & \\
\hline 14 \text { JULY } 2017
\end{array}
\]

Lisa Torlina Armin Scrin

\section*{Experimental Evidence for Quantum Tunneling Time}

Nicolas Camus, Enderalp Yakaboylu, Lutz Fechner, Michael Klaiber, Martin Laux, Yonghao Mi,
Karen Z. Hatsagortsyan, \({ }^{\dagger}\) Thomas Pfeifer, Christoph H. Keitel, and Robert Moshammer \({ }^{\ddagger}\) Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (Received 20 January 2017; published 14 July 2017)
The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses ( 1300 nm ). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

DOI: 10.1103/PhysRevLett. 119.023201

Modern short-pulse lasers generate electric fields that are comparable in strength to those that electrons experience in atoms [1]. Effectively distorting the Coulomb potential of the atomic core, these fields allow ionization of the system
the tunneling step [14,22], whether the tunneling delay time exists [23,24], and if yes, which definition of the tunneling delay time precisely predicts attoclock experiments [ 15,25\(]\).
In our approach the tunneling dynamics is described

- Tunnelling-plus-trajectory models work really well
- Can we provide a solid backing for them from the Schrödinger equation?

- Tunnelling-plus-trajectory models work really well
- Can we provide a solid backing for them from the Schrödinger equation?

- Tunnelling-plus-trajectory models work really well
- Can we provide a solid backing for them from the Schrödinger equation?

Heuristics for trajectories that inside the tunnel

- \(E_{\text {kin }}=E_{\text {tot }}-V(\mathbf{r})<0\) so \(v^{2}<0\)
- Therefore \(v=i \kappa\) is imaginary
- But I need to cover a real distance \(\Delta x\)
- So... make \(\Delta t\) imaginary?
- Or: how can we distil this into something that makes more sense?

Heuristics for trajectories that inside the tunnel

- \(E_{\text {kin }}=E_{\text {tot }}-V(\mathbf{r})<0\) so \(v^{2}<0\)
- Therefore \(v=i \kappa\) is imaginary
- But I need to cover a real distance \(\Delta x\)
- So... make \(\Delta t\) imaginary?
- Or: how can we distil this into something that makes more sense?

\section*{The Strong-Field Approximation}
- The simplest approach is to take a single ground state \(|g\rangle\) ionizing into a laser-driven continuum:

ground state


\section*{The Strong-Field Approximation}
- The simplest approach is to take a single ground state \(|g\rangle\) ionizing into a laser-driven continuum:
\[
|\psi(t)\rangle=\underset{\text { ground state }}{a(t)|g\rangle+\int b(\mathrm{p}, t) e^{-\frac{1}{2} \int_{\infty}^{t}(\mathrm{p}+\mathrm{A}(\tau))^{2} \mathrm{~d} \tau}|\mathrm{p}+\mathrm{A}(t)\rangle \mathrm{dp} .} \text { continuum }
\]


\section*{The Strong-Field Approximation}
- The simplest approach is to take a single ground state \(|g\rangle\) ionizing into a laser-driven continuum:
\[
|\psi(t)\rangle=\underset{\text { ground state }}{a(t)|g\rangle}+\int b(\mathbf{p}, t) e^{-\frac{i}{2} \int_{\infty}^{t}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}|\mathbf{p}+\mathbf{A}(t)\rangle \mathrm{d} \mathbf{p} .
\]


\section*{The Strong-Field Approximation}
- The simplest approach is to take a single ground state \(|g\rangle\) ionizing into a laser-driven continuum:
\[
|\psi(t)\rangle=\underset{\text { ground state }}{a(t)|g\rangle}+\int b(\mathbf{p}, t) e^{-\frac{i}{2} \int_{\infty}^{t}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}|\mathbf{p}+\mathbf{A}(t)\rangle \mathrm{d} \mathbf{p} .
\]
- This gives an ionization amplitude in terms of an oscillatory integral.
\[
\langle\mathbf{p} \mid \psi(T)\rangle=\int_{-\infty}^{T} e^{i l_{\rho} t-\frac{i}{2} \int_{t}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}\langle\mathbf{p}+\mathbf{A}(t)| V_{L}|g\rangle \mathrm{d} t
\]


\section*{The Strong-Field Approximation}
- The simplest approach is to take a single ground state \(|g\rangle\) ionizing into a laser-driven continuum:
\[
|\psi(t)\rangle=\underset{\text { ground state }}{a(t)|g\rangle}+\int b(\mathbf{p}, t) e^{-\frac{i}{2} \int_{\infty}^{t}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}|\mathbf{p}+\mathbf{A}(t)\rangle \mathrm{d} \mathbf{p}
\]
- This gives an ionization amplitude in terms of an oscillatory integral.
\[
\langle\mathbf{p} \mid \psi(T)\rangle=\int_{-\infty}^{T} e^{i l_{\rho} t-\frac{i}{2} \int_{t}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}\langle\mathbf{p}+\mathbf{A}(t)| V_{L}|g\rangle \mathrm{d} t
\]


To solve this we shift the integration path into the complex plane


Then we localize the integral to the contributions from the saddle points

\section*{Trajectories in the Strong-Field Approximation}
- This is called the saddle-point approximation. This gives contributions from a discrete set of saddle points:
\[
\langle\mathbf{p} \mid \psi(T)\rangle=\sum_{t_{s}} \sqrt{\frac{2 \pi}{i S^{\prime \prime}\left(t_{s}\right)}}\left\langle\mathbf{p}+\mathbf{A}\left(t_{s}\right)\right| V_{L}|g\rangle e^{i I_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau} .
\]
- Each contribution represents a trajectory with kinetic action \(S=\frac{1}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau\), ionizing at time \(t_{s}\).
- The starting time \(t_{s}\) is complex:
\(\operatorname{Re}(\omega t)\)

\section*{Trajectories in the Strong-Field Approximation}
- This is called the saddle-point approximation. This gives contributions from a discrete set of saddle points:
\[
\langle\mathbf{p} \mid \psi(T)\rangle=\sum_{t_{s}} \sqrt{\frac{2 \pi}{i S^{\prime \prime}\left(t_{s}\right)}}\left\langle\mathbf{p}+\mathbf{A}\left(t_{s}\right)\right| V_{L}|g\rangle e^{i l_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau} .
\]
- Each contribution represents a trajectory with kinetic action \(S=\frac{1}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau\), ionizing at time \(t_{s}\).
- The starting time \(t_{s}\) is complex:


\section*{Trajectories in the Strong-Field Approximation}
- This is called the saddle-point approximation. This gives contributions from a discrete set of saddle points:
\[
\langle\mathbf{p} \mid \psi(T)\rangle=\sum_{t_{s}} \sqrt{\frac{2 \pi}{i S^{\prime \prime}\left(t_{s}\right)}}\left\langle\mathbf{p}+\mathbf{A}\left(t_{s}\right)\right| V_{L}|g\rangle e^{i l_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau} .
\]
- Each contribution represents a trajectory with kinetic action \(S=\frac{1}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau\), ionizing at time \(t_{s}\).
- The starting time \(t_{s}\) is complex:
\[
\frac{1}{2}\left(\mathbf{p}+\mathbf{A}\left(t_{s}\right)\right)^{2}+I_{p}=0
\]


\section*{How can we include the Coulomb potential into this description?}
- It would be nice to expand this description to include the Coulomb interaction with the nucleus. Something like
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i l_{p} t_{s}-i S_{C}\left(\mathbf{p}, t_{s}\right)} ?
\]
- This is known as the Coulomb-Corrected SFA. The action splits in two:

- Successful at reproducing experiments. The extension is by analogy, and the initial conditions are put in by hand.

\section*{How can we include the Coulomb potential into this description?}
- It would be nice to expand this description to include the Coulomb interaction with the nucleus. Something like
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i l_{p} t_{s}-i S_{C}\left(\mathbf{p}, t_{s}\right)} ?
\]
- This is known as the Coulomb-Corrected SFA. The action splits in two:
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i I_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{t_{0}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}
\]
- Successful at reproducing experiments.
\(\rightarrow\) The extension is by analogy, and the initial conditions are put in by hand.

\section*{How can we include the Coulomb potential into this description?}
- It would be nice to expand this description to include the Coulomb interaction with the nucleus. Something like
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i l_{p} t_{s}-i S_{C}\left(\mathbf{p}, t_{s}\right)} ?
\]
- This is known as the Coulomb-Corrected SFA. The action splits in two:
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e_{\text {tunnelling }}^{i I_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{t_{0}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau} e^{-i S_{\mathrm{C}}\left(\mathbf{p}, t_{0}\right)} .
\]
- Successful at reproducing experiments.
- The extension is by analogy, and the initial conditions are put in by hand.

\section*{How can we include the Coulomb potential into this description?}
- It would be nice to expand this description to include the Coulomb interaction with the nucleus. Something like
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i l_{p} t_{s}-i S_{C}\left(\mathbf{p}, t_{s}\right)} ?
\]
- This is known as the Coulomb-Corrected SFA. The action splits in two:
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e_{\text {tunnelling }}^{i I_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{t_{0}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau} e^{-i S_{\mathrm{C}}\left(\mathbf{p}, t_{0}\right)} .
\]
- Successful at reproducing experiments.
- The extension is by analogy, and the initial conditions are put in by hand.

\section*{How can we include the Coulomb potential into this description?}
- It would be nice to expand this description to include the Coulomb interaction with the nucleus. Something like
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i l_{p} t_{s}-i S_{C}\left(\mathbf{p}, t_{s}\right)} ?
\]
- This is known as the Coulomb-Corrected SFA. The action splits in two:
\[
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i I_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{t_{0}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau} e^{\text {tunnelling }} \quad e_{\begin{array}{l}
\text { action on } \\
\text { exact trajectory }
\end{array}}^{-i S_{\mathrm{C}}\left(\mathbf{p}, t_{0}\right)} .
\]
- Successful at reproducing experiments.
- The extension is by analogy, and the initial conditions are put in by hand.

Is there a first-principles way to arrive at this description?
- The action \(e^{i I_{\rho} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}\) comes from the continuum wavefunction. If we want to modify the continuum dynamics, we should do it at this level.
- Semiclassical perturbation theory, in the exponent, gives the eikonal-Volkov wavefunctions:

- Here \(\mathbf{r}_{\mathrm{L}}(\tau ; \mathbf{r}, \mathbf{k}, t)=\mathbf{r}+\int_{t}^{\tau}\left(\mathbf{p}+\mathbf{A}\left(\tau^{\prime}\right)\right) \mathrm{d} \tau^{\prime}\) is the laser-driven trajectory that starts at \(\mathbf{r}\) and has asymptotic momentum \(\mathbf{p}\).

\section*{Is there a first-principles way to arrive at this description?}
- The action \(e^{i I_{\rho} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}\) comes from the continuum wavefunction. If we want to modify the continuum dynamics, we should do it at this level.
- Semiclassical perturbation theory, in the exponent, gives the eikonal-Volkov wavefunctions:
\[
\left\langle\mathbf{r} \mid \mathbf{p}^{(\mathrm{EV})}(t)\right\rangle \propto e_{\substack{\text { plane } \\ \text { wave }}}^{i(\mathbf{p}+\mathbf{A}(t)) \cdot \mathbf{r}} e
\]

\section*{Is there a first-principles way to arrive at this description?}
- The action \(e^{i I_{\rho} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}\) comes from the continuum wavefunction. If we want to modify the continuum dynamics, we should do it at this level.
- Semiclassical perturbation theory, in the exponent, gives the eikonal-Volkov wavefunctions:
\[
\left\langle\mathbf{r} \mid \mathbf{p}^{(\mathrm{EV})}(t)\right\rangle \propto e_{\substack{\text { plane } \\ \text { wave }}}^{i(\mathbf{p}+\mathbf{A}(t)) \cdot \mathbf{r}} e^{-\frac{i}{2} \int_{\infty}^{t}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}
\]
- Here \(\mathbf{r}_{\mathrm{L}}(\tau ; \mathbf{r}, \mathbf{k}, t)=\mathbf{r}+\int_{t}^{\tau}\left(\mathbf{p}+\mathbf{A}\left(\tau^{\prime}\right)\right) \mathrm{d} \tau^{\prime}\) is the laser-driven trajectory that starts at \(\mathbf{r}\) and has asymptotic momentum \(\mathbf{p}\).

\section*{Is there a first-principles way to arrive at this description?}
- The action \(e^{i I_{\rho} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}\) comes from the continuum wavefunction. If we want to modify the continuum dynamics, we should do it at this level.
- Semiclassical perturbation theory, in the exponent, gives the eikonal-Volkov wavefunctions:
- Here \(\mathbf{r}_{\mathrm{L}}(\tau ; \mathbf{r}, \mathbf{k}, t)=\mathbf{r}+\int_{t}^{\tau}\left(\mathbf{p}+\mathbf{A}\left(\tau^{\prime}\right)\right) \mathrm{d} \tau^{\prime}\) is the laser-driven trajectory that starts at \(\mathbf{r}\) and has asymptotic momentum \(\mathbf{p}\).

\section*{Is there a first-principles way to arrive at this description?}
- The action \(e^{i I_{p} t_{s}-\frac{i}{2} \int_{t_{s}}^{\infty}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}\) comes from the continuum wavefunction. If we want to modify the continuum dynamics, we should do it at this level.
- Semiclassical perturbation theory, in the exponent, gives the eikonal-Volkov wavefunctions:
\[
\left\langle\mathbf{r} \mid \mathbf{p}^{(\mathrm{EV})}(t)\right\rangle \propto \underset{\substack{\text { plane } \\
\text { wave }}}{e^{i(\mathbf{p}+\mathbf{A}(t)) \cdot \mathbf{r}}} e^{-\frac{i}{2} \int_{\infty}^{t}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau} e^{-i \int_{\infty}^{t}} \mathrm{e} \begin{aligned}
& \text { anetic } \\
& \text { action }
\end{aligned} \quad \begin{gathered}
\text { Coulomb } \\
\text { correction }
\end{gathered}
\]
- Here \(\mathbf{r}_{\mathrm{L}}(\tau ; \mathbf{r}, \mathbf{k}, t)=\mathbf{r}+\int_{t}^{\tau}\left(\mathbf{p}+\mathbf{A}\left(\tau^{\prime}\right)\right) \mathrm{d} \tau^{\prime}\) is the laser-driven trajectory that starts at \(\mathbf{r}\) and has asymptotic momentum \(\mathbf{p}\).

Smirnova, Spanner \& Ivanov, Phys. Rev. A 77, 033407 (2008)

\section*{Fencing off the Coulomb singularity}
- The eikonal wavefunctions are perturbative in the Coulomb potential so they can't get too close to the singularity at \(\mathbf{r}=0\).
- To handle this we fence off the continuum using an artificial boundary.


Eikonal-Volkov
wavefunctions
outside
- Known as Analytical \(R\)-Matrix theory.
\(\qquad\)

\section*{Fencing off the Coulomb singularity}
- The eikonal wavefunctions are perturbative in the Coulomb potential so they can't get too close to the singularity at \(\mathbf{r}=0\).
- To handle this we fence off the continuum using an artificial boundary.


Eikonal-Volkov wavefunctions outside
- Known as Analytical R-Matrix theory.

\section*{Fencing off the Coulomb singularity}
- The eikonal wavefunctions are perturbative in the Coulomb potential so they can't get too close to the singularity at \(\mathbf{r}=0\).
- To handle this we fence off the continuum using an artificial boundary.


Eikonal-Volkov wavefunctions outside
- Known as Analytical \(R\)-Matrix theory.
- We get a similar trajectory language:
\[
\begin{gathered}
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i I_{p} t_{s}+\frac{i}{2} \int_{T}^{t_{s}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau}, \text { SFA component }
\end{gathered}
\]
- Two major differences:
- Trajectory is only laser-driven.
\[
\mathbf{r}_{\mathrm{L}}(t)=\int_{t_{s}}^{t}(\mathbf{p}+\mathbf{A}(\tau)) \mathrm{d} \tau
\]
- The TDSE gives us a trajectory that's real-valued at the entrance to the tunnel, at the complex ionization time \(t_{s}\).
- We get a similar trajectory language:
\[
\begin{array}{rc}
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i I_{p} t_{s}+\frac{i}{2}} \int_{T}^{t_{s}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau & e^{-i \int_{t_{\kappa}}^{T} U\left(\int_{t_{s}}^{\tau} \mathbf{p}+\mathbf{A}\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime}\right) \mathrm{d} \tau} \\
\text { SFA component } & \text { Coulomb correction }
\end{array}
\]
- Two major differences:
- Trajectory is only laser-driven.
\[
\mathbf{r}_{\mathrm{L}}(t)=\int_{t_{\mathrm{s}}}^{t}(\mathbf{p}+\mathbf{A}(\tau)) \mathrm{d} \tau
\]
- The TDSE gives us a trajectory that's real-valued at the entrance to the tunnel, at the complex ionization time \(t_{s}\).
- We get a similar trajectory language:
\[
\begin{array}{cc}
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i I_{p} t_{s}+\frac{i}{2}} \int_{T}^{t_{s}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau & e^{-i \int_{t_{\kappa}}^{T} U\left(\int_{t_{s}}^{\tau} \mathbf{p}+\mathbf{A}\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime}\right) \mathrm{d} \tau} \\
\text { SFA component } & \text { Coulomb correction }
\end{array}
\]
- Two major differences:
- Trajectory is only laser-driven.
\[
\mathbf{r}_{\mathrm{L}}(t)=\int_{t_{\mathrm{s}}}^{t}(\mathbf{p}+\mathbf{A}(\tau)) \mathrm{d} \tau
\]
- The TDSE gives us a trajectory that's real-valued at the entrance to the tunnel, at the complex ionization time \(t_{s}\).
- We get a similar trajectory language:
\[
\begin{array}{rc}
\langle\mathbf{p} \mid \psi(T)\rangle \propto e^{i I_{p} t_{s}+\frac{i}{2}} \int_{T}^{t_{s}}(\mathbf{p}+\mathbf{A}(\tau))^{2} \mathrm{~d} \tau & e^{-i \int_{t_{\kappa}}^{T} U\left(\int_{t_{s}}^{\tau} \mathbf{p}+\mathbf{A}\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime}\right) \mathrm{d} \tau} \\
\text { SFA component } & \text { Coulomb correction }
\end{array}
\]
- Two major differences:
- Trajectory is only laser-driven.
\[
\mathbf{r}_{\mathrm{L}}(t)=\int_{t_{\mathrm{s}}}^{t}(\mathbf{p}+\mathbf{A}(\tau)) \mathrm{d} \tau
\]
- The TDSE gives us a trajectory that's real-valued at the entrance to the tunnel, at the complex ionization time \(t_{s}\).


\section*{What does this mean for the trajectories?}
- On the downwards leg to the real time axis, the trajectory becomes complex, through \(\int_{t_{s}}^{t_{i}}(\mathbf{p}+\mathbf{A}(\tau)) \mathrm{d} \tau\).


- The electron then needs to get from negative \(z\) to positive \(z\), avoiding the Coulomb singularity.


\section*{What does this mean for the trajectories?}
- On the downwards leg to the real time axis, the trajectory becomes complex, through \(\int_{t_{s}}^{t_{i}}(\mathbf{p}+\mathbf{A}(\tau)) \mathrm{d} \tau\).


- The electron then needs to get from negative \(z\) to positive \(z\), avoiding the Coulomb singularity.

- This is important, because the Coulomb potential's singularity...

- Question: where is this singularity in the complex plane, and do we need to be careful to avoid it?
- This is important, because the Coulomb potential's singularity has a tail:

- Question: where is this singularity in the complex plane, and do we need to be careful to avoid it?
- This is important, because the Coulomb potential's singularity has a tail:

- Question: where is this singularity in the complex plane, and do we need to be careful to avoid it?

\section*{Where is the singularity?}
\[
z_{\mathrm{L}}(t)=\int_{t_{\mathrm{s}}}^{t}\left(p_{z}+A(\tau)\right) \mathrm{d} \tau, \quad \sqrt{r^{2}}=\sqrt{x^{2}+y^{2}+z^{2}} .
\]



\section*{Where is the singularity?}
\[
z_{\mathrm{L}}(t)=\int_{t_{s}}^{t}\left(p_{z}+A(\tau)\right) \mathrm{d} \tau, \quad \sqrt{r^{2}}=\sqrt{x^{2}+y^{2}+z^{2}}
\]

\[
\operatorname{Re}(z)
\]


\section*{Where is the singularity?}


\section*{Where is the singularity?}


\section*{Where is the singularity?}


\section*{... and how can we avoid it?}


\section*{... and how can we avoid it?}
\[
\text { Contours of } \sqrt{\mathbf{r}_{\mathrm{L}}(t)^{2}}
\]

\(\operatorname{Re}(\omega t)\)

\section*{... and how can we avoid it?}


\section*{... and how can we avoid it?}

- This is a saddle point of \(\sqrt{\mathbf{r}_{\mathrm{L}}(t)^{2}} \longleftrightarrow\) also of \(\mathbf{r}_{\mathrm{L}}(t)^{2}\).

- These are the times of closest approach to the ion

(...in complex space.)

\section*{... and how can we avoid it?}
\[
\text { Contours of } \sqrt{\mathbf{r}_{\mathrm{L}}(t)^{2}}
\]

- This is a saddle point of \(\sqrt{\mathbf{r}_{\mathrm{L}}(t)^{2}} \longleftrightarrow\) also of \(\mathbf{r}_{\mathrm{L}}(t)^{2}\).
\[
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{r}_{\mathrm{L}}(t)^{2}=0 \Longleftrightarrow \mathbf{r}_{\mathrm{L}}(t) \cdot \mathbf{v}(t)=0 \longleftrightarrow \\
& \text { re the times of closest approach to the ion } \\
& \\
& (\ldots \text { in complex space. })
\end{aligned}
\]

\(x\)

\section*{Slalom!}


Slalom!


\section*{This directly impacts the photoelectron spectrum}


\section*{These are low-energy structures}



Pullen et al, J Phys B 47, 204010 (2014)

What does this tell us about Near-Zero Energy structures?
- There are two mirror-image families of soft-recollision trajectories

- They should both have similar effects on the photoelectron spectrum - They scale very different with intensity and wavelength:

What does this tell us about Near-Zero Energy structures?
- There are two mirror-image families of soft-recollision trajectories

- They should both have similar effects on the photoelectron spectrum
- They scale very different with intensity and wavelength:

What does this tell us about Near-Zero Energy structures?
- There are two mirror-image families of soft-recollision trajectories

- They should both have similar effects on the photoelectron spectrum
- They scale very different with intensity and wavelength:
\[
p_{z} \sim \frac{2 z_{\text {quiv }}}{\frac{3}{2} T} \sim \frac{F}{\omega} \quad \text { vs } \quad p_{z} \sim \frac{z_{\text {exit }}}{T} \sim \frac{I_{p} \omega}{F}
\]

\section*{Other uses: enhancement at fast recollisions}


Keil, Popruzhenko \& Bauer, Phys. Rev. Lett. 117, 243003 (2016)

\section*{Other uses: enhancement at fast recollisions}


Keil, Popruzhenko \& Bauer, Phys. Rev. Lett. 117, 243003 (2016)

What does this tell us about trajectories after tunnelling?
- You can indeed ground the trajectory models in the Schrödinger equation.
- Tunnelling is weirder than we thought. Time is complex, and so is the position.
- The complex component of the position directly impacts the tunnelling amplitudes
- It also forces you to keep on your toes and be careful with how you navigate. The most comfortable contour is not always allowed.

What does this tell us about trajectories after tunnelling?
- You can indeed ground the trajectory models in the Schrödinger equation.
- Tunnelling is weirder than we thought. Time is complex, and so is the position.
- The complex component of the position directly impacts the tunnelling amplitudes
- It also forces you to keep on your toes and be careful with how you navigate. The most comfortable contour is not always allowed.

What does this tell us about trajectories after tunnelling?
- You can indeed ground the trajectory models in the Schrödinger equation.
- Tunnelling is weirder than we thought. Time is complex, and so is the position.
- The complex component of the position directly impacts the tunnelling amplitudes
- It also forces you to keep on your toes and be careful with how you navigate. The most comfortable contour is not always allowed.

What does this tell us about trajectories after tunnelling?
- You can indeed ground the trajectory models in the Schrödinger equation.
- Tunnelling is weirder than we thought. Time is complex, and so is the position.
- The complex component of the position directly impacts the tunnelling amplitudes
- It also forces you to keep on your toes and be careful with how you navigate. The most comfortable contour is not always allowed.

\section*{Thank you!}

\section*{Saddle-point geometry}


\section*{Saddle-point geometry}


\section*{Saddle-point geometry}


\section*{Saddle-point geometry}
```

