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Introduction

G will always be a commutative cancellative semigroup, additively denoted, of
any cardinality.

If X ⊆ G, we will define the set of finite sums of X to be

FS(X) = {x1 + · · ·+ xn
∣∣n ∈ N and x1, . . . , xn ∈ X are distinct}.

Theorem (Galvin/Glazer/Hindman)

For every commutative cancellative semigroup G and every colouring
c : G −→ 2 with two colours, there exists an infinite X ⊆ G such that FS(X) is
monochromatic.

In all known proofs of this result, the set X is constructed by means
of a recursion with ω steps.
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An uncountable version?

Question
Is it possible to find, given a colouring c : G −→ 2 of an uncountable
commutative cancellative semigroup, an uncountable X with FS(X)
monochromatic?

Theorem
For every uncountable commutative cancellative semigroup G there exists a
colouring c : G −→ 2 such that whenever X ⊆ G is uncountable, FS(X) is not
monochromatic.
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An algebraic interlude

Our key algebraic tool to treat these problems is the following result:

Theorem
Let G be any commutative cancellative semigroup of cardinality κ > ω. Then
there are countable abelian groups Gα, α < κ, such that G embeds into

⊕
α<κ

Gα =

{
x ∈

∏
α<κ

Gα

∣∣∣∣x(α) = 0 for all but finitely many α < κ

}
.

Note that, if c :
⊕

α<κGα −→ 2 is a “bad” colouring, then so is c � G. Thus
from now on we will assume without loss of generality that G =

⊕
α<κGα,

where each Gα is countable.

Given x ∈
⊕

α<κGα, we will define the support of x to be

supp(x) = {α < κ
∣∣x(α) 6= 0} ∈ [κ]<ω.
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Back to uncountable analogs

Theorem
For every uncountable commutative cancellative semigroup G there exists a
colouring c : G −→ 2 such that whenever X ⊆ G is uncountable, FS(X) is not
monochromatic.

We denote the statement above by G9 [ω1]
FS
ω (recall the square-bracket

notation for higher analogs of Ramsey’s theorem).

Theorem
If V = L, then for every uncountable commutative cancellative semigroup it is
the case that G9 [ω1]

FS
ω1

.

Theorem
Modulo large cardinals it is consistent (e.g. in a model of Martin’s Maximum)
that R→ [ω1]

FS
ω1

.
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A new set-theoretic principle

Definition

Given cardinals κ ≥ θ, the symbol S(κ, θ) will denote the following statement:
there exists a colouring d : [κ]<ω −→ θ such that, whenever X ⊆ [κ]<ω

satisfies |X | = κ, for every δ < θ it is possible to find two distinct x, y ∈ X such
that d(z) = δ whenever x4 y ⊆ z ⊆ x ∪ y.

Theorem

Let κ = cf(κ) ≥ θ ≥ ω1. If S(κ, θ) holds, then for every commutative
cancellative G with |G| = κ, G9 [κ]FS2

θ .

Here FS2(X) = {x+ y
∣∣x, y ∈ X are distinct} for every X ⊆ G.
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Which κ are good for this?

Recall that the combinatorial principle Pr1(κ, λ, θ, χ) states the existence of a
colouring c : [κ]2 −→ θ such that, whenever X ⊆ [κ]<χ has size λ and is
pairwise disjoint, for all δ < θ we can find two distinct x, y ∈ X such that
c[x× y] = {δ}.

Fact

If cf(κ) = κ > ω1 admits a nonreflecting stationary set, then Pr1(κ, κ, κ, ω)
holds (for example, if κ = λ+ for λ = cf(λ) ≥ ω1).

Theorem

If κ = cf(κ) ≥ ω1 and θ ≤ κ, then Pr1(κ, κ, θ, ω) implies S(κ, θ). In particular, if
Pr1(κ, κ, θ, ω) holds then G9 [κ]FS2

θ whenever |G| = κ.

In fact, more is true.

Theorem

S(ω1, ω1) holds. In particular, whenever |G| = ω1, it is the case that
G9 [ω1]

FS2
ω1

.
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Negative result about sumsets

Theorem

If κ = cf(κ) ≥ ω1 and θ ≤ κ, then Pr1(κ, κ, θ, ω) implies the existence of a
d : [κ]<ω −→ θ such that, for all families X ,Y ⊆ [κ]<ω satisfying |X | = |Y| = κ
and every δ < θ, there are x ∈ X and y ∈ Y such that d(z) = δ whenever
x4 y ⊆ z ⊆ x ∪ y.

Theorem

If κ = cf(κ) ≥ ω1 and θ ≤ κ satisfy the conclusion of the above theorem, then
whenever |G| = κ there is a colouring c : G −→ θ such that for every n ∈ N
and every choice of X1, . . . , Xn ⊆ G with |X1| = · · · = |Xn| = κ, the sumset

X1 + · · ·+Xn = {x1 + · · ·+ xn
∣∣x1 ∈ X1, . . . , xn ∈ Xn}

meets all colours.

Theorem
The conclusion of the theorem at the top also holds if κ = θ = ω1. In
particular, whenever |G| = ω1 there is a colouring c : G −→ ω1 such that every
sumset X1 + · · ·+Xn in which |X1| = · · · = |Xn| = ω1 must meet all colours.
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