Topological partition relations for ω^2

Claribet Piña Universidad de los Andes

Workshop on Set Theory and its applications in Topology

Oaxaca September 16, 2016

Consider $\alpha, \beta < \omega_1$ endowed with the order topology, $r, \ell > 0$ and $m < \ell$, we write

$$\alpha \to (\mathsf{top}\ \beta)_{\ell,m}^r$$

Consider $\alpha, \beta < \omega_1$ endowed with the order topology, $r, \ell > 0$ and $m < \ell$, we write

$$\alpha \to (\mathsf{top}\ \beta)_{\ell,m}^r$$

if for any $f: [\alpha]^r \longrightarrow \ell$, there is a subspace γ of α such that:

- $oldsymbol{0}$ γ is homeomorphic to β , and
- **2** $|f''[\gamma]^r| \le m$.

Consider $\alpha, \beta < \omega_1$ endowed with the order topology, $r, \ell > 0$ and $m < \ell$, we write

$$\alpha \to (\mathsf{top}\ \beta)_{\ell,m}^r$$

if for any $f: [\alpha]^r \longrightarrow \ell$, there is a subspace γ of α such that:

- \bullet γ is homeomorphic to β , and
- **2** $|f''[\gamma]^r| \le m$.

We will consider $\beta = \omega^2 + 1$ and r = 2.

Consider $\alpha, \beta < \omega_1$ endowed with the order topology, $r, \ell > 0$ and $m < \ell$, we write

$$\alpha \to (\mathsf{top}\ \beta)_{\ell,m}^r$$

if for any $f: [\alpha]^r \longrightarrow \ell$, there is a subspace γ of α such that:

- $oldsymbol{0}$ γ is homeomorphic to β , and
- **2** $|f''[\gamma]^r| \le m$.

We will consider $\beta = \omega^2 + 1$ and r = 2.

Theorem (Baumgartner)

Given X a countable Hausdorff space, there is a coloring $g:[X]^2 \longrightarrow \mathbb{N}$ such that if $Y \subseteq X$ and $n \in \mathbb{N}$, then $\{0,1,\ldots,2n-1\} \subseteq g''[Y]^2$ whenever $Y^{(n)} \neq \emptyset$.

Consider $\alpha, \beta < \omega_1$ endowed with the order topology, $r, \ell > 0$ and $m < \ell$, we write

$$\alpha \to (\mathsf{top}\ \beta)_{\ell,m}^r$$

if for any $f: [\alpha]^r \longrightarrow \ell$, there is a subspace γ of α such that:

- $oldsymbol{0}$ γ is homeomorphic to β , and
- **2** $|f''[\gamma]^r| \le m$.

We will consider $\beta = \omega^2 + 1$ and r = 2.

Theorem (Baumgartner)

Given X a countable Hausdorff space, there is a coloring $g:[X]^2 \longrightarrow \mathbb{N}$ such that if $Y \subseteq X$ and $n \in \mathbb{N}$, then $\{0,1,\ldots,2n-1\} \subseteq g''[Y]^2$ whenever $Y^{(n)} \neq \emptyset$.

Remarks: The relation above makes sense for $\beta < \omega^{\omega}$.

Consider $\alpha, \beta < \omega_1$ endowed with the order topology, $r, \ell > 0$ and $m < \ell$, we write

$$\alpha \to (\mathsf{top}\ \beta)_{\ell,m}^r$$

if for any $f: [\alpha]^r \longrightarrow \ell$, there is a subspace γ of α such that:

- \bullet γ is homeomorphic to β , and
- **2** $|f''[\gamma]^r| \le m$.

We will consider $\beta = \omega^2 + 1$ and r = 2.

Theorem (Baumgartner)

Given X a countable Hausdorff space, there is a coloring $g:[X]^2 \longrightarrow \mathbb{N}$ such that if $Y \subseteq X$ and $n \in \mathbb{N}$, then $\{0,1,\ldots,2n-1\} \subseteq g''[Y]^2$ whenever $Y^{(n)} \neq \emptyset$.

Remarks: The relation above makes sense for $\beta < \omega^{\omega}$. Moreover, if $\beta = \omega^2 + 1$ then $m \ge 4$.

$$\alpha \to (\text{top }\omega^2 + 1)_{\ell,m}^2$$

Given $\alpha < \omega_1$ and $0 < m < \ell$, in order to verify that

$$\alpha \to (\text{top } \omega^2 + 1)_{\ell,m}^2$$

• we consider $\mathcal{F} \subseteq \left[\mathbb{N}\right]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type α ,

$$\alpha \to (\text{top } \omega^2 + 1)_{\ell,m}^2$$

- we consider $\mathcal{F} \subseteq [\mathbb{N}]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type α ,
- given any partition $\left[\mathcal{F}\right]^2 = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_{\ell-1}$,

$$\alpha \to (\text{top } \omega^2 + 1)_{\ell,m}^2$$

- we consider $\mathcal{F} \subseteq \left[\mathbb{N}\right]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type α ,
- given any partition $\left[\mathcal{F}\right]^2$ = $\mathcal{F}_0 \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_{\ell-1}$,
- we find a subfamily $\mathcal{H} \subseteq \mathcal{F}$ of topological type $\omega^2 + 1$ such that we can color $\left[\mathcal{H}\right]^2$ with at most m colors

$$\alpha \to (\text{top } \omega^2 + 1)_{\ell,m}^2$$

- we consider $\mathcal{F} \subseteq \left[\mathbb{N}\right]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type α ,
- given any partition $\left[\mathcal{F}\right]^2 = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_{\ell-1}$,
- we find a subfamily $\mathcal{H} \subseteq \mathcal{F}$ of topological type $\omega^2 + 1$ such that we can color $\left[\mathcal{H}\right]^2$ with at most m colors:
 - $[\mathcal{H}]^2 \cap \mathcal{F}_i \neq \emptyset$ for at most m values of $i < \ell$.

Given $\alpha < \omega_1$ and $0 < m < \ell$, in order to verify that

$$\alpha \to (\text{top } \omega^2 + 1)_{\ell,m}^2$$

- we consider $\mathcal{F} \subseteq [\mathbb{N}]^{<\infty} \subseteq 2^{\mathbb{N}}$ of topological type α ,
- given any partition $\left[\mathcal{F}\right]^2 = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_{\ell-1}$,
- we find a subfamily $\mathcal{H} \subseteq \mathcal{F}$ of topological type $\omega^2 + 1$ such that we can color $\left[\mathcal{H}\right]^2$ with at most m colors:

$$\left[\mathcal{H}\right]^2 \cap \mathcal{F}_i \neq \emptyset$$
 for at most m values of $i < \ell$.

In order to get $\mathcal{H} \sim \omega^2 + 1$ we chose \mathcal{H} which *behaves* as $[\mathbb{N}]^{\leq 2}$.

$$\mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

$$\mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

• $s < s_i < s_j$ for every $i < j < \omega$,

$$\mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

- $s < s_i < s_j$ for every $i < j < \omega$,
- $s_i < s_{i,j} < s_{i,k}$ for every $i < j < k < \omega$,

$$\mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

- $s < s_i < s_j$ for every $i < j < \omega$,
- $s_i < s_{i,j} < s_{i,k}$ for every $i < j < k < \omega$,
- any two elements intersect just in a root.

$$\mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

- $s < s_i < s_j$ for every $i < j < \omega$,
- $s_i < s_{i,j} < s_{i,k}$ for every $i < j < k < \omega$,
- any two elements intersect just in a root.

For every $\omega^2 + 1 \sim \mathcal{A} \subseteq \left[\mathbb{N}\right]^{<\infty}$ there is $\mathcal{H} \subseteq \mathcal{A}$ as before.

Theorem (Todorcevic)

There is a coloring osc : $\left[\left[\mathbb{N} \right]^{<\infty} \right]^2 \longrightarrow \mathbb{N}$ such that given $\mathcal{A} \subseteq \left[\mathbb{N} \right]^{<\infty}$ and $n < \omega$, if \mathcal{A} is homeomorphic to $\omega^n + 1$ then $\{1, 2, \ldots, 2n\} \subseteq \operatorname{osc}''[\mathcal{A}]^2$.

Theorem (Todorcevic)

There is a coloring osc : $\left[\left[\mathbb{N} \right]^{<\infty} \right]^2 \longrightarrow \mathbb{N}$ such that given $\mathcal{A} \subseteq \left[\mathbb{N} \right]^{<\infty}$ and $n < \omega$, if \mathcal{A} is homeomorphic to $\omega^n + 1$ then $\{1, 2, \ldots, 2n\} \subseteq \operatorname{osc}''[\mathcal{A}]^2$.

 $osc''[\mathcal{H}]^2 = \{1, 2, 3, 4\}$ for \mathcal{H} as before.

Theorem (Todorcevic)

There is a coloring osc : $\left[\left[\mathbb{N} \right]^{<\infty} \right]^2 \longrightarrow \mathbb{N}$ such that given $\mathcal{A} \subseteq \left[\mathbb{N} \right]^{<\infty}$ and $n < \omega$, if \mathcal{A} is homeomorphic to $\omega^n + 1$ then $\{1, 2, \ldots, 2n\} \subseteq \operatorname{osc}''[\mathcal{A}]^2$.

osc" $[\mathcal{H}]^2 = \{1, 2, 3, 4\}$ for \mathcal{H} as before.

Fact: Given $\mathcal{F} \subseteq \left[\mathbb{N}\right]^{<\infty}$ of topological type $\alpha > \omega^2$, any partition $\left[\mathcal{F}\right]^2 = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_{\ell-1}$ and $\mathcal{H} \subseteq \mathcal{F}$ as before, then for every $i \in \{1, 2, 3, 4\}$ there is $k_i < \ell$ (hopefully unique) satisfying

$$u, v \in \mathcal{H} (\operatorname{osc}(\{u, v\}) = i \longrightarrow \{u, v\} \in \mathcal{F}_{k_i}).$$

$$u, v \in \mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

$$u, v \in \mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

$$\bullet \operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 1$$

$$S$$
 S_i

$$u, v \in \mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 1$$

$$S$$
 S_i $S_{i,j}$

$$S$$
 S_i $S_{i,j}$

$$u, v \in \mathcal{H} = \{s\} \cup \{s \cup s_i : i < \omega\} \cup \{s \cup s_i \cup s_{i,j} : i < j < \omega\}$$

•
$$osc({u, v}) = 1$$

$$S$$
 S_i $S_{i,j}$

•
$$osc(\{u, v\}) = 2$$

$$S$$
 S_i S_j

Si

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 1$$

$$S$$
 S_i

$$S$$
 S_i $S_{i,j}$

$$S$$
 S_i $S_{i,j}$

•
$$osc(\{u, v\}) = 2$$

$$S$$
 S_i S_j

$$s_{j,q}$$

$$S$$
 S_i $S_{i,p}$ S_j

$$S$$
 S_i $S_{i,p}$ S_j $S_{j,q}$

$$S_j$$
 $S_{j,q}$

$$S$$
 S_i

$$S$$
 S_i $S_{i,p}$ $S_{i,q}$

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 1$$

$$S$$
 S_i

$$S$$
 S_i $S_{i,j}$

$$S$$
 S_i $S_{i,j}$

•
$$osc(\{u, v\}) = 2$$

$$S$$
 S_i S_j

$$S$$
 S_i S_j $S_{j,c}$

$$S$$
 S_i $S_{i,p}$ S_j

$$S$$
 S_i $S_{i,p}$ S_j $S_{j,q}$

$$S$$
 S_i $S_{i,p}$ $S_{i,q}$

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 3$$

$$S$$
 S_i S_j $S_{i,p}$

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 1$$

$$S$$
 S_i

$$S$$
 S_i $S_{i,j}$

$$S$$
 S_i $S_{i,j}$

•
$$osc(\{u, v\}) = 2$$

$$S$$
 S_i S_j

$$S$$
 S_i S_j $S_{j,q}$

$$S$$
 S_i $S_{i,p}$ S_j

$$S$$
 S_i $S_{i,p}$ S_j $S_{j,q}$

$$S$$
 S_i $S_{i,p}$ $S_{i,q}$

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 3$$

$$S$$
 S_i S_i $S_{i,D}$

$$S$$
 S_i S_i $S_{i,a}$ $S_{i,b}$

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 1$$

$$S$$
 S_i $S_{i,j}$

$$S$$
 S_i $S_{i,j}$

•
$$osc(\{u, v\}) = 2$$

$$S$$
 S_i S_j $S_{j,q}$

$$S$$
 S_i $S_{i,p}$ S_j

$$S$$
 S_i $S_{i,p}$ S_j $S_{j,q}$

$$S$$
 S_i $S_{i,p}$ $S_{i,q}$

$$S_{i,p}$$
 $S_{i,q}$

•
$$\operatorname{osc}(\{\boldsymbol{u},\boldsymbol{v}\}) = 3$$

$$S$$
 S_i S_j $S_{i,p}$

$$S$$
 S_i S_j $S_{j,q}$ $S_{i,p}$

•
$$osc({u, v}) = 4$$

Some optimal partition relations

The number of colors in the following relations are optimal:

• $\alpha \to (\text{top } \omega^2 + 1)_{\ell,11}^2$ for every $\omega^2 < \alpha < \omega^\omega$ and every $\ell > 1$,

Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \to (\text{top } \omega^2 + 1)_{\ell,11}^2$ for every $\omega^2 < \alpha < \omega^\omega$ and every $\ell > 1$,
- $\omega^{\omega} \to (\text{top } \omega^2 + 1)_{\ell,7}^2$ for every $\ell > 1$,

Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \to (\text{top } \omega^2 + 1)_{\ell,11}^2$ for every $\omega^2 < \alpha < \omega^\omega$ and every $\ell > 1$,
- $\omega^{\omega} \rightarrow (\text{top } \omega^2 + 1)_{\ell,7}^2 \text{ for every } \ell > 1$,
- $\alpha \to (\text{top } \omega^2 + 1)_{\ell,6}^2$ for every $\omega^\omega < \alpha < \omega^{\omega^\omega}$ and every $\ell > 1$,

Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \to (\text{top } \omega^2 + 1)_{\ell,11}^2$ for every $\omega^2 < \alpha < \omega^\omega$ and every $\ell > 1$,
- $\omega^{\omega} \rightarrow (\text{top } \omega^2 + 1)_{\ell,7}^2 \text{ for every } \ell > 1$,
- $\alpha \to (\text{top } \omega^2 + 1)_{\ell,6}^2$ for every $\omega^\omega < \alpha < \omega^{\omega^\omega}$ and every $\ell > 1$,
- $\omega^{\omega} \to (\text{top } \omega^2)_{\ell,5}^2$ for every $\omega^{\omega} < \alpha < \omega^{\omega^{\omega}}$ and every $\ell > 1$.

Some optimal partition relations

The number of colors in the following relations are optimal:

- $\alpha \to (\text{top } \omega^2 + 1)_{\ell,11}^2$ for every $\omega^2 < \alpha < \omega^\omega$ and every $\ell > 1$,
- $\omega^{\omega} \rightarrow (\text{top } \omega^2 + 1)_{\ell,7}^2 \text{ for every } \ell > 1$,
- $\alpha \to (\text{top } \omega^2 + 1)_{\ell,6}^2$ for every $\omega^\omega < \alpha < \omega^{\omega^\omega}$ and every $\ell > 1$,
- $\omega^{\omega} \to (\text{top } \omega^2)_{\ell,5}^2$ for every $\omega^{\omega} < \alpha < \omega^{\omega^{\omega}}$ and every $\ell > 1$.

Theorem 1

$$\omega^{\omega} + 1 \rightarrow (\text{top } \omega^2 + 1)_{\ell.6}^2 \text{ for every } \ell > 1.$$

Idea of the proof

Fix
$$\ell > 1$$
 and $\left[\overline{\mathcal{S}}\right]^2 = \mathcal{A}_0 \cup \cdots \cup \mathcal{A}_{\ell-1}$, where $\mathcal{S} = \{s \in \mathsf{FIN} : |s| = \mathsf{min}(s) + 1\}$.

Idea of the proof

$$\operatorname{\mathsf{Fix}} \ell > 1 \text{ and } \left[\, \overline{\mathcal{S}} \, \right]^2 = \mathcal{A}_0 \cup \cdots \cup \mathcal{A}_{\ell-1}, \text{ where } \mathcal{S} = \{ s \in \operatorname{\mathsf{FIN}} : |s| = \min(s) + 1 \}.$$

$$\overline{S} = \{s \in \mathsf{FIN} : |s| \le \mathsf{min}(s) + 1\} \sim \omega^{\omega} + 1.$$

We will choose

$$\mathcal{H} = \{\varnothing\} \cup \left\{s_i \cap \left(x_i + 1\right) : i < \omega\right\} \cup \left\{s_{i,j} \cap \left(y_{i,j} + 1\right) : i < j < \omega\right\}$$

with the help of an infinite set $M \in [\mathbb{N}]^{\infty}$ and subsets $\varphi(s) \subseteq s$ for every $s \in S \upharpoonright M = \{s \in S : s \subseteq M\}$.

We will choose

$$\mathcal{H} = \{\varnothing\} \cup \{s_i \cap (x_i+1): i < \omega\} \cup \{s_{i,j} \cap (y_{i,j}+1): i < j < \omega\}$$

with the help of an infinite set $M \in [\mathbb{N}]^{\infty}$ and subsets $\varphi(s) \subseteq s$ for every $s \in S \upharpoonright M = \{s \in S : s \subseteq M\}$.

For every $i, j < \omega$ we have

- $s_i, s_{i,j} \in \mathcal{S} \upharpoonright M$,
- $s_i \cap (x_i + 1) = s_{i,j} \cap (y_{i,j} + 1),$
- $x_i \in \varphi(s_i) \subseteq s_i$,
- $x_i, y_{i,j} \in \varphi(s_{i,j}) \subseteq s_{i,j}$.

We will choose

$$\mathcal{H} = \{\emptyset\} \cup \{s_i \cap (x_i + 1) : i < \omega\} \cup \{s_{i,j} \cap (y_{i,j} + 1) : i < j < \omega\}$$

with the help of an infinite set $M \in [\mathbb{N}]^{\infty}$ and subsets $\varphi(s) \subseteq s$ for every $s \in \mathcal{S} \upharpoonright M = \{s \in \mathcal{S} : s \subseteq M\}$.

For every $i, j < \omega$ we have

- $s_i, s_{i,j} \in \mathcal{S} \upharpoonright M$,
- $s_i \cap (x_i + 1) \sqsubset s_{i,j} \cap (y_{i,j} + 1)$,
- $x_i \in \varphi(s_i) \subseteq s_i$,
- $\bullet x_i, y_{i,j} \in \varphi(s_{i,j}) \subseteq s_{i,j}.$

We will control de colors in $[\mathcal{H}]^2$ by carefully choosing M and φ .

$$\left[\;\overline{\mathcal{S}}\;\right]^2=\mathcal{A}_0\cup\mathcal{A}_1\cup\cdots\cup\mathcal{A}_{\ell-1}$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into ℓ colors by $x \mapsto i$ iff $\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_i$. Then, we get $\varphi_1(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_1 \in [\mathbb{N}]^{\infty}$ and $i_1 < \ell$ such that:

$$\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_{i_1} \quad \forall \ x \in \varphi_1(s) \ \forall \ s \in \mathcal{S} \upharpoonright M_1.$$

Analogously, by colorings each $[\varphi_1(s)]^2$ into ℓ by $\{x,y\} \mapsto i$ iff $\{s \cap (x+1), s \cap (y+1)\} \in \mathcal{A}_i$, we get $\varphi_2(s) \subseteq \varphi_1(s)$ for each $s \in \mathcal{S}$, an infinite set $M_2 \subseteq M_1$ and $i_2 < \ell$ such that:

$$\{s\cap (x+1),s\cap (y+1)\}\in \mathcal{A}_{i_2}\quad\forall\ x,y\in \varphi_2(s)\ \forall\ s\in \mathcal{S}\upharpoonright M_2.$$

For pairs with oscillation 2, 3 **and** 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

$$\left[\;\overline{\mathcal{S}}\;\right]^2=\mathcal{A}_0\cup\mathcal{A}_1\cup\cdots\cup\mathcal{A}_{\ell-1}$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into ℓ colors by $x \mapsto i$ iff $\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_i$. Then, we get $\varphi_1(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_1 \in [\mathbb{N}]^{\infty}$ and $i_1 < \ell$ such that:

$$\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_{i_1} \quad \forall \ x \in \varphi_1(s) \ \forall \ s \in \mathcal{S} \upharpoonright M_1.$$

Analogously, by colorings each $[\varphi_1(s)]^2$ into ℓ by $\{x,y\} \mapsto i$ iff $\{s \cap (x+1), s \cap (y+1)\} \in \mathcal{A}_i$, we get $\varphi_2(s) \subseteq \varphi_1(s)$ for each $s \in \mathcal{S}$, an infinite set $M_2 \subseteq M_1$ and $i_2 < \ell$ such that:

$$\{s\cap (x+1),s\cap (y+1)\}\in \mathcal{A}_{i_2}\quad\forall\ x,y\in \varphi_2(s)\ \forall\ s\in \mathcal{S}\upharpoonright M_2.$$

For pairs with oscillation 2, 3 **and** 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

$$\left[\;\overline{\mathcal{S}}\;\right]^2 = \mathcal{A}_0 \cup \mathcal{A}_1 \cup \dots \cup \mathcal{A}_{\ell-1}$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into ℓ colors by $x \mapsto i$ iff $\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_i$. Then, we get $\varphi_1(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_1 \in [\mathbb{N}]^{\infty}$ and $i_1 < \ell$ such that:

$$\{\varnothing,s\cap(x+1)\}\in\mathcal{A}_{i_1}\quad\forall~x\in\varphi_1(s)~\forall~s\in\mathcal{S}\upharpoonright M_1.$$

Analogously, by colorings each $[\varphi_1(s)]^2$ into ℓ by $\{x,y\} \mapsto i$ iff $\{s \cap (x+1), s \cap (y+1)\} \in \mathcal{A}_i$, we get $\varphi_2(s) \subseteq \varphi_1(s)$ for each $s \in \mathcal{S}$, an infinite set $M_2 \subseteq M_1$ and $i_2 < \ell$ such that:

$$\{s\cap (x+1),s\cap (y+1)\}\in \mathcal{A}_{i_2}\quad\forall\ x,y\in \varphi_2(s)\ \forall\ s\in \mathcal{S}\upharpoonright M_2.$$

For pairs with oscillation 2, 3 **and** 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

$$\left[\;\overline{\mathcal{S}}\;\right]^2=\mathcal{A}_0\cup\mathcal{A}_1\cup\cdots\cup\mathcal{A}_{\ell-1}$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into ℓ colors by $x \mapsto i$ iff $\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_i$. Then, we get $\varphi_1(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_1 \in [\mathbb{N}]^{\infty}$ and $i_1 < \ell$ such that:

$$\{\varnothing,s\cap (x+1)\}\in \mathcal{A}_{i_1}\quad\forall\ x\in\varphi_1(s)\ \forall\ s\in\mathcal{S}\upharpoonright M_1.$$

Analogously, by colorings each $[\varphi_1(s)]^2$ into ℓ by $\{x,y\} \mapsto i$ iff $\{s \cap (x+1), s \cap (y+1)\} \in \mathcal{A}_i$, we get $\varphi_2(s) \subseteq \varphi_1(s)$ for each $s \in \mathcal{S}$, an infinite set $M_2 \subseteq M_1$ and $i_2 < \ell$ such that:

$$\{s\cap (x+1),s\cap (y+1)\}\in \mathcal{A}_{i_2}\quad\forall\ x,y\in \varphi_2(s)\ \forall\ s\in \mathcal{S}\upharpoonright M_2.$$

For pairs with oscillation 2,3 **and** 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

$$\left[\;\overline{\mathcal{S}}\;\right]^2=\mathcal{A}_0\cup\mathcal{A}_1\cup\cdots\cup\mathcal{A}_{\ell-1}$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into ℓ colors by $x \mapsto i$ iff $\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_i$. Then, we get $\varphi_1(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_1 \in [\mathbb{N}]^{\infty}$ and $i_1 < \ell$ such that:

$$\{\varnothing,s\cap (x+1)\}\in \mathcal{A}_{i_1}\quad\forall\ x\in\varphi_1(s)\ \forall\ s\in\mathcal{S}\upharpoonright M_1.$$

Analogously, by colorings each $[\varphi_1(s)]^2$ into ℓ by $\{x,y\} \mapsto i$ iff $\{s \cap (x+1), s \cap (y+1)\} \in \mathcal{A}_i$, we get $\varphi_2(s) \subseteq \varphi_1(s)$ for each $s \in \mathcal{S}$, an infinite set $M_2 \subseteq M_1$ and $i_2 < \ell$ such that:

$$\{s\cap (x+1), s\cap (y+1)\}\in \mathcal{A}_{i_2}\quad\forall\ x,y\in \varphi_2(s)\ \forall\ s\in \mathcal{S}\upharpoonright M_2.$$

For pairs with oscillation 2,3 **and** 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

$$\left[\;\overline{\mathcal{S}}\;\right]^2=\mathcal{A}_0\cup\mathcal{A}_1\cup\cdots\cup\mathcal{A}_{\ell-1}$$

For pairs with oscillation 1: We color each $s \in \mathcal{S}$ into ℓ colors by $x \mapsto i$ iff $\{\emptyset, s \cap (x+1)\} \in \mathcal{A}_i$. Then, we get $\varphi_1(s) \subseteq s$ for each $s \in \mathcal{S}$, $M_1 \in [\mathbb{N}]^{\infty}$ and $i_1 < \ell$ such that:

$$\{\varnothing,s\cap (x+1)\}\in \mathcal{A}_{i_1}\quad\forall\ x\in \varphi_1(s)\ \forall\ s\in \mathcal{S}\upharpoonright M_1.$$

Analogously, by colorings each $[\varphi_1(s)]^2$ into ℓ by $\{x,y\} \mapsto i$ iff $\{s \cap (x+1), s \cap (y+1)\} \in \mathcal{A}_i$, we get $\varphi_2(s) \subseteq \varphi_1(s)$ for each $s \in \mathcal{S}$, an infinite set $M_2 \subseteq M_1$ and $i_2 < \ell$ such that:

$$\{s\cap (x+1),s\cap (y+1)\}\in \mathcal{A}_{i_2}\quad\forall\ x,y\in \varphi_2(s)\ \forall\ s\in \mathcal{S}\upharpoonright M_2.$$

For pairs with oscillation 2,3 **and** 4: We use moreover the infinite Ramsey theorem and diagonalization processes.

Theorem

Given
$$n, \ell > 1$$
 and $\omega^n < \alpha < \omega_1$. If $m = \left[\sum_{i=1}^n \binom{2i+1}{i+1}\right] - n$ then
$$\alpha \to \left(\text{top } \omega^n + 1\right)_{\ell,m}^2.$$

Theorem

Given
$$n, \ell > 1$$
 and $\omega^n < \alpha < \omega_1$. If $m = \left[\sum_{i=1}^n \binom{2i+1}{i+1}\right] - n$ then
$$\alpha \to \left(\text{top } \omega^n + 1\right)_{\ell,m}^2.$$

• Optimal values for m satisfy $2n \le m \le \left[\sum_{i=1}^{n} {2i+1 \choose i+1}\right] - n$,

Theorem

Given
$$n, \ell > 1$$
 and $\omega^n < \alpha < \omega_1$. If $m = \left[\sum_{i=1}^n \binom{2i+1}{i+1}\right] - n$ then
$$\alpha \to \left(\text{top } \omega^n + 1\right)_{\ell,m}^2.$$

- Optimal values for m satisfy $2n \le m \le \left[\sum_{i=1}^{n} {2i+1 \choose i+1}\right] n$,
- In fact, $m = \left[\sum_{i=1}^{n} \binom{2i+1}{i+1}\right] n$ is optimal for $\omega^n < \alpha < \omega^{\omega}$.

Theorem

Given
$$n, \ell > 1$$
 and $\omega^n < \alpha < \omega_1$. If $m = \left[\sum_{i=1}^n \binom{2i+1}{i+1}\right] - n$ then
$$\alpha \to \left(\text{top } \omega^n + 1\right)_{\ell=m}^2.$$

- Optimal values for m satisfy $2n \le m \le \left[\sum_{i=1}^{n} {2i+1 \choose i+1}\right] n$,
- In fact, $m = \left[\sum_{i=1}^{n} {2i+1 \choose i+1}\right] n$ is optimal for $\omega^n < \alpha < \omega^{\omega}$.

Theorem

Given $\omega^2 < \alpha < \omega_1$ and $\ell > 1$ we have

$$\alpha \to (\text{top } \omega^2 + 1)_{\ell,71}^3$$
.

Theorem

Given $n, \ell > 1$ and $\omega^n < \alpha < \omega_1$. If $m = \left[\sum_{i=1}^n \binom{2i+1}{i+1}\right] - n$ then $\alpha \to \left(\text{top } \omega^n + 1\right)_{\ell=m}^2.$

- Optimal values for m satisfy $2n \le m \le \left[\sum_{i=1}^{n} {2i+1 \choose i+1}\right] n$,
- In fact, $m = \left[\sum_{i=1}^{n} \binom{2i+1}{i+1}\right] n$ is optimal for $\omega^n < \alpha < \omega^\omega$.

$\mathsf{Theorem}$

Given $\omega^2 < \alpha < \omega_1$ and $\ell > 1$ we have

$$\alpha \rightarrow (\text{top }\omega^2 + 1)_{\ell,71}^3$$
.

Moreover, 71 is optimal for every $\omega^2 < \alpha < \omega^{\omega}$.

Thank you!

References

C. Piña.

A topological Ramsey classification of countable ordinals, Acta Math. Hungar., 147 (2): 477-509 (2015).

C. Piña.

A topological Ramsey classification of countable ordinals. II, Acta Math. Hungar., **147 (2)**: 510–527 (2015).

