Bases of homogeneous families below the first Mahlo cardinal

Christina Brech Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Set Theory and its Applications in Topology

Recall the Schreier family

$$\mathcal{S} = \{ s \subseteq \omega : \#s \le \min s \}.$$

Recall the Schreier family

$$\mathcal{S} = \{ s \subseteq \omega : \#s \le \min s \}.$$

It is hereditary, compact and large.

Recall the Schreier family

$$\mathcal{S} = \{ s \subseteq \omega : \#s \le \min s \}.$$

It is hereditary, compact and large.

Theorem (Lopez-Abad, Todorcevic, 2013)

TFAE:

- κ is not ω -Erdös;
- there is a hereditary, compact and large family $\mathcal F$ on κ ;
- there is a non-trivial weakly-null basis $(x_{\alpha})_{\alpha < \kappa}$ in a Banach space with no subsymmetric basic subsequence (ie. indiscernibles).

Recall the Schreier family

$$\mathcal{S} = \{ s \subseteq \omega : \#s \le \min s \}.$$

It is hereditary, compact and large.

Theorem (Lopez-Abad, Todorcevic, 2013)

TFAE:

- κ is not ω -Erdös;
- ullet there is a hereditary, compact and large family ${\cal F}$ on κ ;
- there is a non-trivial weakly-null basis $(x_{\alpha})_{\alpha < \kappa}$ in a Banach space with no subsymmetric basic subsequence (ie. indiscernibles).

For a whole separable reflexive space with no subsymmetric basic sequences (Tsirelson space), finite powers of the Schreier family were used.

In order to get a reflexive nonseparable Banach space with no subsymmetric basic sequences, we generalized the following families and interpolated their corresponding Tsirelson-like nonseparable spaces with the separable Tsirelson space:

In order to get a reflexive nonseparable Banach space with no subsymmetric basic sequences, we generalized the following families and interpolated their corresponding Tsirelson-like nonseparable spaces with the separable Tsirelson space:

A Schreier sequence is defined inductively for $\alpha < \omega_1$ by

- (a) $S_0 := [\omega]^{\leq 1}$,
- (b) $\mathcal{S}_{\alpha+1}:=\mathcal{S}_{\alpha}\otimes\mathcal{S}$,
- (c) $S_{\alpha} := \bigcup_{n < \omega} (S_{\alpha_n} \upharpoonright \omega \setminus n)$ where $(\alpha_n)_n$ is such that $\sup_n \alpha_n = \alpha$, if α is limit:

In order to get a reflexive nonseparable Banach space with no subsymmetric basic sequences, we generalized the following families and interpolated their corresponding Tsirelson-like nonseparable spaces with the separable Tsirelson space:

A Schreier sequence is defined inductively for $\alpha < \omega_1$ by

- (a) $S_0 := [\omega]^{\leq 1}$,
- (b) $S_{\alpha+1} := S_{\alpha} \otimes S$,
- (c) $S_{\alpha} := \bigcup_{n < \omega} (S_{\alpha_n} \upharpoonright \omega \setminus n)$ where $(\alpha_n)_n$ is such that $\sup_n \alpha_n = \alpha$, if α is limit;

where, given $\mathcal{F}, \mathcal{G} \subseteq [\omega]^{<\omega}$,

$$\mathcal{F} \otimes \mathcal{G} = \{ \bigcup_{i=1}^n s_i : s_1 < \dots < s_n \text{ in } \mathcal{F} \text{ and } \{ \min s_i : 1 \leq i \leq n \} \in \mathcal{G} \}.$$

More concretely, given some (uncountable) cardinal κ , we want:

More concretely, given some (uncountable) cardinal κ , we want:

• homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;

More concretely, given some (uncountable) cardinal κ , we want:

• homogeneous families on κ : control on the Cantor-Bendixson ranks of

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω ;

More concretely, given some (uncountable) cardinal κ , we want:

• homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach

- the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω ;
- basis: show the existence of a sufficiently rich collection of homogeneous families on κ which is "closed under some multiplication".

More concretely, given some (uncountable) cardinal κ , we want:

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω ;
- basis: show the existence of a sufficiently rich collection of homogeneous families on κ which is "closed under some multiplication".

Theorem (B., Lopez-Abad, Todorcevic)

For every cardinal κ below the first Mahlo cardinal, there is a basis of homogeneous families on κ .

More concretely, given some (uncountable) cardinal κ , we want:

- homogeneous families on κ : control on the Cantor-Bendixson ranks of the families and their restrictions, for a finer control on the Banach space structure;
- multiplication: find a good notion for $\mathcal{F} \times \mathcal{H}$, for a family \mathcal{F} on κ and a family \mathcal{H} on ω ;
- basis: show the existence of a sufficiently rich collection of homogeneous families on κ which is "closed under some multiplication".

Theorem (B., Lopez-Abad, Todorcevic)

For every cardinal κ below the first Mahlo cardinal, there is a basis of homogeneous families on κ .

Corollary (B., Lopez-Abad, Todorcevic)

For every cardinal κ below the first Mahlo cardinal, there is a reflexive Banach space of density κ with no subsymmetric basic sequences.

Basic definitions

Basic definitions

Definitions

Given $\alpha < \omega_1$, \mathcal{F} is α -homogeneous if $\alpha = \operatorname{srk}(\mathcal{F}) \le \operatorname{rk}(\mathcal{F}) < \iota(\alpha)$, where $\operatorname{srk}(\mathcal{F}) := \inf\{\operatorname{rk}(\mathcal{F} \upharpoonright \mathcal{C}) : \mathcal{C} \text{ is an infinite subset of } \kappa\}$,

 $\iota(\alpha) = \min\{\text{exponentially indecomposible ordinal larger than } \alpha\}.$

 $\iota(lpha)=\min\{ ext{exponentially indecomposible ordinal larger than }lpha\}$

 ${\mathcal F}$ is homogeneous if it is α -homogeneous for some $\alpha<\omega_1$.

Basic definitions

Definitions

Given $\alpha < \omega_1$, \mathcal{F} is α -homogeneous if $\alpha = \operatorname{srk}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F}) < \iota(\alpha)$, where

 $\operatorname{srk}(\mathcal{F}) := \inf\{\operatorname{rk}(\mathcal{F} \upharpoonright C) : \text{C is an infinite subset of κ}\},$

 $\iota(\alpha) = \min\{\text{exponentially indecomposible ordinal larger than } \alpha\}.$

 ${\mathcal F}$ is homogeneous if it is α -homogeneous for some $\alpha<\omega_1.$

If $\mathcal F$ is homogeneous on κ and $\mathcal H$ is homogeneous on ω , a family $\mathcal G$ on κ is a multiplication of $\mathcal F$ by $\mathcal H$ when

- \mathcal{G} is homogeneous and $\iota(\operatorname{srk}(\mathcal{G})) = \iota(\operatorname{srk}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H}))$.
- Every sequence $(s_n)_{n<\omega}$ in $\mathcal F$ has an infinite subsequence $(t_n)_n$ such that for every $x\in\mathcal H$ one has that $\bigcup_{n\in x}t_n\in\mathcal G$.

Definition

A basis on κ is a pair (\mathfrak{B}, \times) such that:

- \mathfrak{B} is a collection of homogeneous families on κ containing all cubes and for all $\omega < \alpha < \omega_1$, there is a α -homogeneous family on κ in \mathfrak{B}
 - and for all $\omega \leq \alpha < \omega_1$, there is a α -homogeneous family on κ in \mathfrak{B} .

 \mathfrak{B} is closed under \sqcup and \sqcup
 - $\times: \mathfrak{B} \times \mathfrak{S} \to \mathfrak{B}$ is such that for every $\mathcal{F} \in \mathfrak{B}$ and every $\mathcal{H} \in \mathfrak{S}$ one has that $\mathcal{F} \times \mathcal{H}$ is a multiplication of \mathcal{F} by \mathcal{H} .

(\mathfrak{S} is the collection of all hereditary, spreading, uniform families on ω .)

Definition

A basis on κ is a pair (\mathfrak{B}, \times) such that:

- \mathfrak{B} is a collection of homogeneous families on κ containing all cubes and for all $\omega < \alpha < \omega_1$, there is a α -homogeneous family on κ in \mathfrak{B} .
 - \mathfrak{B} is closed under \cup and \cup .
 - $\bullet \ \times : \mathfrak{B} \times \mathfrak{S} \to \mathfrak{B} \ \text{is such that for every } \mathcal{F} \in \mathfrak{B} \ \text{and every } \mathcal{H} \in \mathfrak{S} \ \text{one}$ has that $\mathcal{F} \times \mathcal{H}$ is a multiplication of \mathcal{F} by \mathcal{H} .
- ($\mathfrak S$ is the collection of all hereditary, spreading, uniform families on $\omega.$)

Remark: Schreier families are spreading and uniform, so that, in particular, any element of the basis can be multiplied (within the basis) by a Schreier family.

Example Given \mathcal{F} on ω , let $\langle \mathcal{F} \rangle_{\mathrm{spr}}$ be the set of all $\{n_1 < \cdots < n_k\}$ such that there is $\{m_1 < \cdots < m_k\} \in \mathcal{F}$ such that $m_i \leq n_i$.

Example Given \mathcal{F} on ω , let $\langle \mathcal{F} \rangle_{\text{spr}}$ be the set of all $\{n_1 < \cdots < n_k\}$ such that there is $\{m_1 < \cdots < m_k\} \in \mathcal{F}$ such that $m_i \leq n_i$.

The collection $\mathfrak B$ of all homogeneous families on ω such that

The collection
$$\mathfrak B$$
 of all homogeneous families on ω such that
$$\iota(\operatorname{srk}(\mathcal F)) = \iota(\operatorname{srk}(\langle \mathcal F \rangle_{\operatorname{spr}})),$$

Example Given \mathcal{F} on ω , let $\langle \mathcal{F} \rangle_{\text{spr}}$ be the set of all $\{n_1 < \cdots < n_k\}$ such that there is $\{m_1 < \cdots < m_k\} \in \mathcal{F}$ such that $m_i \leq n_i$.

The collection $\mathfrak B$ of all homogeneous families on ω such that $\iota(\operatorname{srk}(\mathcal{F})) = \iota(\operatorname{srk}(\langle \mathcal{F} \rangle_{\operatorname{spr}})),$

$$\iota(\operatorname{srk}(\mathcal{F})) = \iota(\operatorname{srk}(\langle \mathcal{F}
angle_{\operatorname{spr}})),$$

together with $\times: \mathfrak{B} \times \mathfrak{S} \to \mathfrak{B}$ defined by

$$\mathcal{F} imes \mathcal{H} := (\mathcal{F} \otimes \mathcal{H})$$

$$\mathcal{F} imes\mathcal{H}:=(\mathcal{F}\otimes\mathcal{H})\oplus\mathcal{F},$$

is a basis on ω .

Example Given \mathcal{F} on ω , let $\langle \mathcal{F} \rangle_{\mathrm{spr}}$ be the set of all $\{n_1 < \cdots < n_k\}$ such that there is $\{m_1 < \cdots < m_k\} \in \mathcal{F}$ such that $m_i \leq n_i$.

The collection ${\mathfrak B}$ of all homogeneous families on ω such that

$$\iota(\operatorname{srk}(\mathcal{F})) = \iota(\operatorname{srk}(\langle \mathcal{F} \rangle_{\operatorname{spr}})),$$

together with $\times:\mathfrak{B}\times\mathfrak{S}\to\mathfrak{B}$ defined by

$$\mathcal{F} \times \mathcal{H} := (\mathcal{F} \otimes \mathcal{H}) \oplus \mathcal{F},$$

is a basis on ω .

$$\mathcal{F} \oplus \mathcal{G} = \{ s \cup t : s < t, \ s \in \mathcal{G}, \ t \in \mathcal{F} \}.$$

$$\mathcal{F} \otimes \mathcal{G} = \{ \bigcup_{k < n} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{\min s_k : k < n\} \in \mathcal{G} \}.$$

Let $\mathcal{P}=(P,\leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Let $\mathcal{P} = (P, \leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Definitions

Given $\alpha < \omega_1$, \mathcal{F} on \mathcal{P} is α -homogeneous if $\alpha = \operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \le \operatorname{rk}(\mathcal{F}) < \iota(\alpha)$, where

$$\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) = \inf\{\operatorname{rk}(\mathcal{F} \upharpoonright \mathcal{C}) : \mathcal{C} \text{ infinite chain}\} \leq \operatorname{rk}(\mathcal{F}).$$

 \mathcal{F} is homogeneous if it is α -homogeneous for some $\alpha < \omega_1$.

Let $\mathcal{P}=(P,\leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Definitions

Given $\alpha < \omega_1$, \mathcal{F} on \mathcal{P} is α -homogeneous if $\alpha = \operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \le \operatorname{rk}(\mathcal{F}) < \iota(\alpha)$, where $\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) = \inf\{\operatorname{rk}(\mathcal{F} \upharpoonright \mathcal{C}) : \mathcal{C} \text{ infinite chain}\} \le \operatorname{rk}(\mathcal{F}).$

 \mathcal{F} is homogeneous if it is α -homogeneous for some $\alpha < \omega_1$.

If $\mathcal F$ is homogeneous on $\mathcal P$ and $\mathcal H$ is homogeneous on ω , a family $\mathcal G$ on $\mathcal P$ is a multiplication of $\mathcal F$ by $\mathcal H$ when

- \mathcal{G} is homogeneous and $\iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})) = \iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H}))$.
- Every sequence $(s_n)_{n<\omega}$ in $\mathcal F$ whose union is a chain has an infinite subsequence $(t_n)_n$ such that for every $x\in\mathcal H$ one has that $\bigcup_{n\in x}t_n\in\mathcal G$.

Let $\mathcal{P}=(P,\leq)$ be a partial order. By a family on \mathcal{P} we mean a family on P consisting of chains.

Definitions

Given $\alpha < \omega_1$, \mathcal{F} on \mathcal{P} is α -homogeneous if $\alpha = \operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \le \operatorname{rk}(\mathcal{F}) < \iota(\alpha)$, where $\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) = \inf\{\operatorname{rk}(\mathcal{F} \upharpoonright \mathcal{C}) : \mathcal{C} \text{ infinite chain}\} \le \operatorname{rk}(\mathcal{F}).$

 \mathcal{F} is homogeneous if it is α -homogeneous for some $\alpha < \omega_1$.

If $\mathcal F$ is homogeneous on $\mathcal P$ and $\mathcal H$ is homogeneous on ω , a family $\mathcal G$ on $\mathcal P$ is a multiplication of $\mathcal F$ by $\mathcal H$ when

- \mathcal{G} is homogeneous and $\iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})) = \iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H}))$.
- Every sequence $(s_n)_{n<\omega}$ in $\mathcal F$ whose union is a chain has an infinite subsequence $(t_n)_n$ such that for every $x\in\mathcal H$ one has that $\bigcup_{n\in x}t_n\in\mathcal G$.

A basis of families on \mathcal{P} is defined analogously.

Let T be a tree and given families A and C on T, let $A \odot_T C$ be the family on T of all $s \subseteq T$ such that:

- $\langle s \rangle \cap Ch_a \subseteq \mathcal{A}$, that is, for every $t \in \mathcal{T}$, the set of immediate successors of t with respect to s belongs to \mathcal{A} ;
- $\langle s \rangle \cap Ch_c \subseteq \mathcal{C}$, that is, and every chain $\langle s \rangle$ belongs to \mathcal{C} .

Let T be a tree and given families A and C on T, let $A \odot_T C$ be the family on T of all $s \subseteq T$ such that:

- $\langle s \rangle \cap Ch_a \subseteq \mathcal{A}$, that is, for every $t \in \mathcal{T}$, the set of immediate successors of t with respect to s belongs to \mathcal{A} ;
- $\langle s \rangle \cap \mathit{Ch}_c \subseteq \mathcal{C}$, that is, and every chain $\langle s \rangle$ belongs to \mathcal{C} .

Proposition

If $\mathcal A$ and $\mathcal C$ are homogeneous families on $(T,<_a)$ and $(T,<_c)$, respectively, then $\mathcal A\odot_T\mathcal C$ is a homogeneous family on T.

Let T be a tree and given families A and C on T, let $A \odot_T C$ be the family on T of all $s \subseteq T$ such that:

- $\langle s \rangle \cap Ch_a \subseteq \mathcal{A}$, that is, for every $t \in \mathcal{T}$, the set of immediate successors of t with respect to s belongs to \mathcal{A} ;
- $\langle s \rangle \cap \mathit{Ch}_c \subseteq \mathcal{C}$, that is, and every chain $\langle s \rangle$ belongs to \mathcal{C} .

Proposition

If $\mathcal A$ and $\mathcal C$ are homogeneous families on $(T,<_a)$ and $(T,<_c)$, respectively, then $\mathcal A\odot_{\mathcal T}\mathcal C$ is a homogeneous family on $\mathcal T$.

The proof is based on controlling the ranks of $\mathcal{A} \odot_{\mathcal{T}} \mathcal{C}$ in terms of the ranks of \mathcal{A} and \mathcal{C} .

Let T be a tree and given families A and C on T, let $A \odot_T C$ be the family on T of all $s \subseteq T$ such that:

- $\langle s \rangle \cap Ch_a \subseteq \mathcal{A}$, that is, for every $t \in \mathcal{T}$, the set of immediate successors of t with respect to s belongs to \mathcal{A} ;
- $\langle s \rangle \cap Ch_c \subseteq \mathcal{C}$, that is, and every chain $\langle s \rangle$ belongs to \mathcal{C} .

Proposition

If $\mathcal A$ and $\mathcal C$ are homogeneous families on $(T,<_a)$ and $(T,<_c)$, respectively, then $\mathcal A\odot_T\mathcal C$ is a homogeneous family on T.

The proof is based on controlling the ranks of $\mathcal{A} \odot_{\mathcal{T}} \mathcal{C}$ in terms of the ranks of \mathcal{A} and \mathcal{C} . In these computations,the following fact is helpful:

Let T be a tree and given families A and C on T, let $A \odot_T C$ be the family on T of all $s \subseteq T$ such that:

- $\langle s \rangle \cap Ch_a \subseteq \mathcal{A}$, that is, for every $t \in \mathcal{T}$, the set of immediate successors of t with respect to s belongs to \mathcal{A} ;
- $\langle s \rangle \cap \mathit{Ch}_c \subseteq \mathcal{C}$, that is, and every chain $\langle s \rangle$ belongs to \mathcal{C} .

Proposition

If $\mathcal A$ and $\mathcal C$ are homogeneous families on $(T,<_a)$ and $(T,<_c)$, respectively, then $\mathcal A\odot_T\mathcal C$ is a homogeneous family on T.

The proof is based on controlling the ranks of $\mathcal{A}\odot_{\mathcal{T}}\mathcal{C}$ in terms of the ranks of \mathcal{A} and \mathcal{C} . In these computations,the following fact is helpful: for every family \mathcal{F} on \mathcal{T} ,

 $\operatorname{srk}(\mathcal{F}) = \inf \{ \operatorname{rk}(\mathcal{F} \upharpoonright X) : X \text{ is an infinite chain, comb or fan} \}.$

Given a family \mathcal{F} on T, let

$$\langle \mathcal{F} \rangle = \{ x \subseteq \langle s \rangle : s \in \mathcal{F} \}.$$

Given a family \mathcal{F} on T, let

$$\langle \mathcal{F} \rangle = \{ x \subseteq \langle s \rangle : s \in \mathcal{F} \}.$$

Lemma

If \mathcal{B}^a and \mathcal{B}^c are bases on $(T,<_a)$ and $(T,<_c)$, respectively, let \mathfrak{B} be the collection of all homogeneous families \mathcal{F} on T such that

- $\langle \mathcal{F} \rangle$ is homogeneous and $\mathrm{rk}(\langle \mathcal{F} \rangle) < \iota(\mathrm{rk}(\mathcal{F}))$;
- $\mathcal{A} := \langle \mathcal{F} \rangle \cap Ch_a \in \mathfrak{B}^a$ and $\mathcal{C} := \langle \mathcal{F} \rangle \cap Ch_c \in \mathfrak{B}^c$.

Given $\mathcal{F} \in \mathfrak{B}$ and a hereditary, spreading, uniform family \mathcal{H} on ω , then

$$\mathcal{F} \times \mathcal{H} = ((\mathcal{A} \times_{a} \mathcal{H}) \sqcup_{a} [T]^{\leq 1}) \odot_{T} ((\mathcal{C} \times_{c} \mathcal{H}) \boxtimes_{c} 5)$$

is a multiplication such that $\mathfrak B$ is a basis on T.

Stepping up

Stepping up

Theorem

If there is a basis on κ , then there is a basis on 2^{κ} .

Stepping up

Theorem

If there is a basis on κ , then there is a basis on 2^{κ} .

Given a basis $\mathfrak B$ on κ , the collection of families of the form

$$\mathcal{G} = \{ s \subset T : s \text{ is a chain and } ht''s \in \mathcal{F} \}$$

for some $\mathcal{F}\in\mathfrak{B}$ (with some suitable multiplication) is a basis on $(\mathcal{T},<_c)$.

 $(C_{\alpha})_{\alpha<\kappa}$ is a small *C*-sequence on κ if

- each C_{α} is a club in α with $otp(C_{\alpha}) = cof(\alpha)$;
- there is $f : \kappa \to \kappa$ such that $otp(C_{\alpha}) < f(\min C_{\alpha})$ for all α .

 $(C_{\alpha})_{\alpha<\kappa}$ is a small *C*-sequence on κ if

- each C_{α} is a club in α with $otp(C_{\alpha}) = cof(\alpha)$;
- there is $f: \kappa \to \kappa$ such that $otp(C_{\alpha}) < f(\min C_{\alpha})$ for all α .

Given a small *C*-sequence $(C_{\alpha})_{\alpha<\kappa}$, let $\rho_0: [\kappa]^2 \to (\wp(\kappa))^{<\omega}$ for $\alpha<\beta$ defined recursively by

$$\rho_0(\alpha,\beta) := (C_\beta \cap \alpha)^{\hat{}} \rho_0(\alpha, \min(C_\beta \setminus \alpha))$$
$$\rho_0(\alpha,\alpha) := \emptyset.$$

Let $T = T(\rho_0)$ be the tree whose nodes are $\rho_0(\cdot, \beta) \upharpoonright \alpha$, $\alpha < \beta$, ordered by end-extension as functions.

 $(C_{\alpha})_{\alpha<\kappa}$ is a small *C*-sequence on κ if

- each C_{α} is a club in α with $otp(C_{\alpha}) = cof(\alpha)$;
- there is $f : \kappa \to \kappa$ such that $otp(C_{\alpha}) < f(\min C_{\alpha})$ for all α .

Given a small *C*-sequence $(C_{\alpha})_{\alpha < \kappa}$, let $\rho_0 : [\kappa]^2 \to (\wp(\kappa))^{<\omega}$ for $\alpha < \beta$ defined recursively by

$$\rho_0(\alpha,\beta) := (C_\beta \cap \alpha)^{\hat{}} \rho_0(\alpha, \min(C_\beta \setminus \alpha))$$
$$\rho_0(\alpha,\alpha) := \emptyset.$$

Let $T = T(\rho_0)$ be the tree whose nodes are $\rho_0(\cdot, \beta) \upharpoonright \alpha$, $\alpha < \beta$, ordered by end-extension as functions.

Proposition

If there is a basis on every $\theta < \kappa$, then there is a basis on $(T, <_c)$ and hence on κ .

 $(C_{\alpha})_{\alpha < \kappa}$ is a small *C*-sequence on κ if

- each C_{α} is a club in α with $otp(C_{\alpha}) = cof(\alpha)$;
- there is $f : \kappa \to \kappa$ such that $otp(C_{\alpha}) < f(\min C_{\alpha})$ for all α .

Given a small C-sequence $(C_{\alpha})_{\alpha<\kappa}$, let $\rho_0: [\kappa]^2 \to (\wp(\kappa))^{<\omega}$ for $\alpha<\beta$ defined recursively by

$$\rho_0(\alpha,\beta) := (C_\beta \cap \alpha)^{\hat{}} \rho_0(\alpha, \min(C_\beta \setminus \alpha))$$
$$\rho_0(\alpha,\alpha) := \emptyset.$$

Let $T = T(\rho_0)$ be the tree whose nodes are $\rho_0(\cdot, \beta) \upharpoonright \alpha$, $\alpha < \beta$, ordered by end-extension as functions.

Proposition

If there is a basis on every $\theta < \kappa$, then there is a basis on $(T, <_c)$ and hence on κ .

Corollary

Every cardinal below the first Mahlo cardinal has a basis.

ullet Characterize κ supporting a basis.

- ullet Characterize κ supporting a basis.
- Find some interesting notion of a product between families on the same large index set.

- Characterize κ supporting a basis.
- Find some interesting notion of a product between families on the same large index set.

The minimal cardinal \mathfrak{ns}_{refl} such that any reflexive Banach space of density \mathfrak{ns}_{refl} has a subsymmetric sequence is between the first Mahlo cardinal and the first ω -Erdös cardinal.

- Characterize κ supporting a basis.
- Find some interesting notion of a product between families on the same large index set.

The minimal cardinal \mathfrak{ns}_{refl} such that any reflexive Banach space of density \mathfrak{ns}_{refl} has a subsymmetric sequence is between the first Mahlo cardinal and the first ω -Erdös cardinal.

• Can we get better bounds?