
Algebraic stacks in the representation theory
of finite-dimensional algebras

Daniel Chan
joint work with Boris Lerner

University of New South Wales
web.maths.unsw.edu.au/∼danielch

October 2015

Daniel Chan joint work with Boris Lerner

Introduction

always work over base field k algebraically closed of char 0.

Motto

Moduli stacks are a fruitful way to study non-commutative algebra,
because they are a machine to construct functors.

Plan of talk

Recall the variety of representations of a quiver with relations.

Brief user’s guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack
which is derived equivalent to it?

We finally,

introduce a new moduli stack of “Serre stable representations”,
which gives a first approximation to answering this question.

Daniel Chan joint work with Boris Lerner

Introduction

always work over base field k algebraically closed of char 0.

Motto

Moduli stacks are a fruitful way to study non-commutative algebra,
because they are a machine to construct functors.

Plan of talk

Recall the variety of representations of a quiver with relations.

Brief user’s guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack
which is derived equivalent to it?

We finally,

introduce a new moduli stack of “Serre stable representations”,
which gives a first approximation to answering this question.

Daniel Chan joint work with Boris Lerner

Introduction

always work over base field k algebraically closed of char 0.

Motto

Moduli stacks are a fruitful way to study non-commutative algebra,
because they are a machine to construct functors.

Plan of talk

Recall the variety of representations of a quiver with relations.

Brief user’s guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack
which is derived equivalent to it?

We finally,

introduce a new moduli stack of “Serre stable representations”,
which gives a first approximation to answering this question.

Daniel Chan joint work with Boris Lerner

Introduction

always work over base field k algebraically closed of char 0.

Motto

Moduli stacks are a fruitful way to study non-commutative algebra,
because they are a machine to construct functors.

Plan of talk

Recall the variety of representations of a quiver with relations.

Brief user’s guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack
which is derived equivalent to it?

We finally,

introduce a new moduli stack of “Serre stable representations”,
which gives a first approximation to answering this question.

Daniel Chan joint work with Boris Lerner

Introduction

always work over base field k algebraically closed of char 0.

Motto

Moduli stacks are a fruitful way to study non-commutative algebra,
because they are a machine to construct functors.

Plan of talk

Recall the variety of representations of a quiver with relations.

Brief user’s guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack
which is derived equivalent to it?

We finally,

introduce a new moduli stack of “Serre stable representations”,
which gives a first approximation to answering this question.

Daniel Chan joint work with Boris Lerner

Introduction

always work over base field k algebraically closed of char 0.

Motto

Moduli stacks are a fruitful way to study non-commutative algebra,
because they are a machine to construct functors.

Plan of talk

Recall the variety of representations of a quiver with relations.

Brief user’s guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack
which is derived equivalent to it?

We finally,

introduce a new moduli stack of “Serre stable representations”,
which gives a first approximation to answering this question.

Daniel Chan joint work with Boris Lerner

Introduction

always work over base field k algebraically closed of char 0.

Motto

Moduli stacks are a fruitful way to study non-commutative algebra,
because they are a machine to construct functors.

Plan of talk

Recall the variety of representations of a quiver with relations.

Brief user’s guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack
which is derived equivalent to it?

We finally,

introduce a new moduli stack of “Serre stable representations”,
which gives a first approximation to answering this question.

Daniel Chan joint work with Boris Lerner

Quivers and representations

We use the following notation

quiver Q = (Q0 = vertices,Q1 = edges) without oriented cycles

kQ the path algebra & I / kQ an admissible ideal of relations

M = ⊕v∈Q0Mv is a (right) A = kQ/I -module i.e. a representation
of Q with relations I .

The dimension vector of M is
~dimM = (dimk Mv)v∈Q0 ∈ ZQ0 ' K0(A).

Daniel Chan joint work with Boris Lerner

Quivers and representations

We use the following notation

quiver Q = (Q0 = vertices,Q1 = edges) without oriented cycles

kQ the path algebra & I / kQ an admissible ideal of relations

M = ⊕v∈Q0Mv is a (right) A = kQ/I -module i.e. a representation
of Q with relations I .

The dimension vector of M is
~dimM = (dimk Mv)v∈Q0 ∈ ZQ0 ' K0(A).

Daniel Chan joint work with Boris Lerner

Quivers and representations

We use the following notation

quiver Q = (Q0 = vertices,Q1 = edges) without oriented cycles

kQ the path algebra & I / kQ an admissible ideal of relations

M = ⊕v∈Q0Mv is a (right) A = kQ/I -module i.e. a representation
of Q with relations I .

The dimension vector of M is
~dimM = (dimk Mv)v∈Q0 ∈ ZQ0 ' K0(A).

Daniel Chan joint work with Boris Lerner

Quivers and representations

We use the following notation

quiver Q = (Q0 = vertices,Q1 = edges) without oriented cycles

kQ the path algebra & I / kQ an admissible ideal of relations

M = ⊕v∈Q0Mv is a (right) A = kQ/I -module i.e. a representation
of Q with relations I .

The dimension vector of M is
~dimM = (dimk Mv)v∈Q0 ∈ ZQ0 ' K0(A).

Daniel Chan joint work with Boris Lerner

Quivers and representations

We use the following notation

quiver Q = (Q0 = vertices,Q1 = edges) without oriented cycles

kQ the path algebra & I / kQ an admissible ideal of relations

M = ⊕v∈Q0Mv is a (right) A = kQ/I -module i.e. a representation
of Q with relations I .

The dimension vector of M is
~dimM = (dimk Mv)v∈Q0 ∈ ZQ0 ' K0(A).

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Representation variety

Let’s classify representations with dim vector ~d = (dv). Consider one
such M.

Picking bases i.e. isomorphisms Mv ' kdv gives a unique point of

Rep(Q, ~d) :=
∏

v→w∈Q1

Homk(kdv , kdw).

Choice of basis is up to group GL(~d) :=
∏

v∈Q0

GL(dv).

If I 6= 0, then kQ/I -modules correspond to some closed subscheme

Rep(Q, I , ~d) ⊆ Rep(Q, ~d).

GL(~d) acts on Rep(Q, I , ~d) and orbits correspond to isomorphism

classes of modules (with dim vector ~d),

stabilisers correspond to automorphism groups of M.

The diagonal copy of k× acts trivially so PGL(~d) := GL(~d)/k× also
acts.

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w ,

~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling,

so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Motivating example à la King

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1).

k
x //
y
// k ∈ Rep(Q,~1) ' k2 = A2

PGL(~1) = k×2/k× ' k× acts by scaling, so if we omit (x , y) = (0, 0)
(explain later) have quotient (Rep(Q,~1)− (0, 0))/PGL ' P1.

We get a family of modules M(x :y) = M(x :y),v

x //
y
// M(x :y),w

parametrised by (x : y) ∈ P1 which gives “the” universal representation

U = OP1

x //
y
// OP1 (1)

Interesting Fact

U is an OP1 −A-bimodule whose dual ATOP1 = HomP1 (U ,O) induces
inverse derived equivalences

RHomP1 (T ,−) : Db(P1) −→ Db(A), −⊗L
A T : Db(A) −→ Db(P1)

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes.

A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set
so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.
We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set
so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.
We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set

so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.
We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set
so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.
We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set
so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.

We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set
so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.
We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set
so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.
We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Stacks: via categorifying Grothendieck’s functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X
is not determined by its k-points, but is determined by all its R-points (R
comm ring). More precisely, it’s determined by

Functor of points

the functor of points of X , which is the covariant functor
hX = HomScheme(Spec (−),X) : CommRing −→ Set
so hX (R) = {f : Spec R −→ X}

Remark Compare with maximal atlas defn of a manifold.
We “categorify” this defn, and let Gpd be the category of groupoids =
small categories with all morphisms invertible.

“Definition” (Stack)

A stack is a pseudo-functor h : CommRing −→ Gpd + lots of axioms.

Think of the isomorphism classes of objects in the category h(k) as the
“k-points” & the category now remembers automorphisms.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x ,

& the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st

q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X .

Want a “stacky” group quotient [X/G] st “k-points” are the G -orbits
G .x , & the automorphism group of such a point is StabG x < G .

Recall A scheme morphism Ũ −→ U is a G -torsor or G -bundle if G acts
on Ũ and trivially on U, is G -equivariant and locally on U is the trivial
G -torsor pr : G × U −→ U.

Motivation There should be a G -torsor π : X −→ [X/G] so an object of
f ∈ [X/G](R) gives a Cartesian square

Ũ
φ−−−−→ X

q

y yπ
U := Spec R −−−−→

f
[X/G]

=⇒ objects of [X/G](R) are pairs (φ, q) st
q : Ũ −→ Spec R is a G -torsor & φ : Ũ −→ X is G -equivariant.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn,

so action
free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U.

Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Effect of stabiliser groups

Define category of coherent sheaves Coh[X/G] = category of
G -equivariant coherent sheaves on X e.g. if X smooth, ω[X/G] := ωX .

Consider case X = A1
x & G = µp = 〈ζ = p

√
1〉 acts by multn, so action

free on x 6= 0 but StabG 0 = µp.

k-points are parametrised by y = xp.

If y 6= 0 then k[x]/(xp − y) is a simple sheaf on [X/G].

If y = 0, then k[x]/(xp) is non-split extension of p non-isomorphic
simples k[x]/(x) with µp-action given by the p characters of µp.

General Fact

If Ũ −→ U is a G -torsor, then [Ũ/G] ' U. Here [(A1
x − 0)/µp] ' A1

y − 0.

ωX = k[x]dx & ω[X/G] ⊗[X/G] − permutes the simples with x = 0
cyclically.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y .

The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y ,

except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.

Daniel Chan joint work with Boris Lerner

Families through stacky points

Note there is also a “birational” map [A1
x/µp] −→ A1

y . The rational

inverse φ : A1
y − 0 −→ [A1

x/µp] given by

A1
x − 0 −−−−→ A1

x

x 7→xp=y

y
A1

y − 0

Important Phenomenon

You can’t extend φ to all of A1
y , except by first passing to to an étale

cover of A1
y − 0 as below.

Have tautological quotient map A1
x −→ [A1

x/µp] defined by

µp × A1
x

action−−−−→ A1
x

pr

y
A1

x

This process is called “stable reduction”.
Daniel Chan joint work with Boris Lerner

Weighted projective lines

Can define stacks via gluing just as for schemes.

Let y1, . . . , yn ∈ P1 and p1, . . . , pn ≥ 2 be integer weights.
There is a stack W = P1(

∑
piyi) and map π : P1(

∑
piyi) −→ P1 which

is

an isomorphism away from the yi ,

locally near yi , it looks like [A1
x/µpi] −→ A1

y

We call P1(
∑

piyi) a weighted projective line.

π∗ induces an isomorphism

k2 = HomP1 (O,O(1)) −→ HomW(π∗O, π∗O(1)).

If fi ∈ HomW(π∗O, π∗O(1)) corresponds to yi , then

coker (fi : π∗O −→ π∗O(1))

is the non-split extension of pi non-isomorphic simples on previous slide.

Daniel Chan joint work with Boris Lerner

Weighted projective lines

Can define stacks via gluing just as for schemes.

Let y1, . . . , yn ∈ P1 and p1, . . . , pn ≥ 2 be integer weights.

There is a stack W = P1(
∑

piyi) and map π : P1(
∑

piyi) −→ P1 which
is

an isomorphism away from the yi ,

locally near yi , it looks like [A1
x/µpi] −→ A1

y

We call P1(
∑

piyi) a weighted projective line.

π∗ induces an isomorphism

k2 = HomP1 (O,O(1)) −→ HomW(π∗O, π∗O(1)).

If fi ∈ HomW(π∗O, π∗O(1)) corresponds to yi , then

coker (fi : π∗O −→ π∗O(1))

is the non-split extension of pi non-isomorphic simples on previous slide.

Daniel Chan joint work with Boris Lerner

Weighted projective lines

Can define stacks via gluing just as for schemes.

Let y1, . . . , yn ∈ P1 and p1, . . . , pn ≥ 2 be integer weights.
There is a stack W = P1(

∑
piyi) and map π : P1(

∑
piyi) −→ P1 which

is

an isomorphism away from the yi ,

locally near yi , it looks like [A1
x/µpi] −→ A1

y

We call P1(
∑

piyi) a weighted projective line.

π∗ induces an isomorphism

k2 = HomP1 (O,O(1)) −→ HomW(π∗O, π∗O(1)).

If fi ∈ HomW(π∗O, π∗O(1)) corresponds to yi , then

coker (fi : π∗O −→ π∗O(1))

is the non-split extension of pi non-isomorphic simples on previous slide.

Daniel Chan joint work with Boris Lerner

Weighted projective lines

Can define stacks via gluing just as for schemes.

Let y1, . . . , yn ∈ P1 and p1, . . . , pn ≥ 2 be integer weights.
There is a stack W = P1(

∑
piyi) and map π : P1(

∑
piyi) −→ P1 which

is

an isomorphism away from the yi ,

locally near yi , it looks like [A1
x/µpi] −→ A1

y

We call P1(
∑

piyi) a weighted projective line.

π∗ induces an isomorphism

k2 = HomP1 (O,O(1)) −→ HomW(π∗O, π∗O(1)).

If fi ∈ HomW(π∗O, π∗O(1)) corresponds to yi , then

coker (fi : π∗O −→ π∗O(1))

is the non-split extension of pi non-isomorphic simples on previous slide.

Daniel Chan joint work with Boris Lerner

Weighted projective lines

Can define stacks via gluing just as for schemes.

Let y1, . . . , yn ∈ P1 and p1, . . . , pn ≥ 2 be integer weights.
There is a stack W = P1(

∑
piyi) and map π : P1(

∑
piyi) −→ P1 which

is

an isomorphism away from the yi ,

locally near yi , it looks like [A1
x/µpi] −→ A1

y

We call P1(
∑

piyi) a weighted projective line.

π∗ induces an isomorphism

k2 = HomP1 (O,O(1)) −→ HomW(π∗O, π∗O(1)).

If fi ∈ HomW(π∗O, π∗O(1)) corresponds to yi , then

coker (fi : π∗O −→ π∗O(1))

is the non-split extension of pi non-isomorphic simples on previous slide.

Daniel Chan joint work with Boris Lerner

Weighted projective lines

Can define stacks via gluing just as for schemes.

Let y1, . . . , yn ∈ P1 and p1, . . . , pn ≥ 2 be integer weights.
There is a stack W = P1(

∑
piyi) and map π : P1(

∑
piyi) −→ P1 which

is

an isomorphism away from the yi ,

locally near yi , it looks like [A1
x/µpi] −→ A1

y

We call P1(
∑

piyi) a weighted projective line.

π∗ induces an isomorphism

k2 = HomP1 (O,O(1)) −→ HomW(π∗O, π∗O(1)).

If fi ∈ HomW(π∗O, π∗O(1)) corresponds to yi , then

coker (fi : π∗O −→ π∗O(1))

is the non-split extension of pi non-isomorphic simples on previous slide.

Daniel Chan joint work with Boris Lerner

Weighted projective lines

Can define stacks via gluing just as for schemes.

Let y1, . . . , yn ∈ P1 and p1, . . . , pn ≥ 2 be integer weights.
There is a stack W = P1(

∑
piyi) and map π : P1(

∑
piyi) −→ P1 which

is

an isomorphism away from the yi ,

locally near yi , it looks like [A1
x/µpi] −→ A1

y

We call P1(
∑

piyi) a weighted projective line.

π∗ induces an isomorphism

k2 = HomP1 (O,O(1)) −→ HomW(π∗O, π∗O(1)).

If fi ∈ HomW(π∗O, π∗O(1)) corresponds to yi , then

coker (fi : π∗O −→ π∗O(1))

is the non-split extension of pi non-isomorphic simples on previous slide.

Daniel Chan joint work with Boris Lerner

Canonical Algebra

Factorising fi into pi inclusions gives

O(y1

p1
) // O(2y1

p1
) // . . . // O((p1−1)y1

p1
)

��8888888888888888888

O(y2

p2
) // O(2y2

p2
) // . . . // O((p2−1)y2

p2
)

%%JJJJJJJJJJJ

π∗O

x1

FF������������������
x2

=={{{{{{{{{

xn

!!CCCCCCCCCC
...

...
...

... π∗O(1)

O(yn
pn

) // O(2yn
pn

) // . . . // O((pn−1)yn
pn

)

99ttttttttttt

Thm(Geigle-Lenzing) The above is a tilting bundle on P1(
∑

piyi) with
endomorphism ring the corresponding canonical algebra.

Daniel Chan joint work with Boris Lerner

Canonical Algebra

Factorising fi into pi inclusions gives

O(y1

p1
) // O(2y1

p1
) // . . . // O((p1−1)y1

p1
)

��8888888888888888888

O(y2

p2
) // O(2y2

p2
) // . . . // O((p2−1)y2

p2
)

%%JJJJJJJJJJJ

π∗O

x1

FF������������������
x2

=={{{{{{{{{

xn

!!CCCCCCCCCC
...

...
...

... π∗O(1)

O(yn
pn

) // O(2yn
pn

) // . . . // O((pn−1)yn
pn

)

99ttttttttttt

Thm(Geigle-Lenzing) The above is a tilting bundle on P1(
∑

piyi) with
endomorphism ring the corresponding canonical algebra.

Daniel Chan joint work with Boris Lerner

Moduli stack of isomorphism classes of A = kQ/I -modules

Fix dim vector ~d ∈ K0(A).

There’s a stack Iso(A, ~d) with k-points the iso

classes of A-modules dim vector ~d & automorphisms = module
automorphisms.
Iso(A, ~d)(R) = category of (R,A)-modules M = ⊕Mv , with

Mv loc free rank dv/R,

Morphisms = bimodule isomorphism

Important Facts

Iso(A, ~d) ' [Rep(Q, I , ~d)/GL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
Iso(A, ~d).

Note These will never be weighted projective lines because all modules
have k× in their automorphism group!

Daniel Chan joint work with Boris Lerner

Moduli stack of isomorphism classes of A = kQ/I -modules

Fix dim vector ~d ∈ K0(A). There’s a stack Iso(A, ~d) with k-points the iso

classes of A-modules dim vector ~d & automorphisms = module
automorphisms.

Iso(A, ~d)(R) = category of (R,A)-modules M = ⊕Mv , with

Mv loc free rank dv/R,

Morphisms = bimodule isomorphism

Important Facts

Iso(A, ~d) ' [Rep(Q, I , ~d)/GL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
Iso(A, ~d).

Note These will never be weighted projective lines because all modules
have k× in their automorphism group!

Daniel Chan joint work with Boris Lerner

Moduli stack of isomorphism classes of A = kQ/I -modules

Fix dim vector ~d ∈ K0(A). There’s a stack Iso(A, ~d) with k-points the iso

classes of A-modules dim vector ~d & automorphisms = module
automorphisms.
Iso(A, ~d)(R) = category of (R,A)-modules M = ⊕Mv , with

Mv loc free rank dv/R,

Morphisms = bimodule isomorphism

Important Facts

Iso(A, ~d) ' [Rep(Q, I , ~d)/GL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
Iso(A, ~d).

Note These will never be weighted projective lines because all modules
have k× in their automorphism group!

Daniel Chan joint work with Boris Lerner

Moduli stack of isomorphism classes of A = kQ/I -modules

Fix dim vector ~d ∈ K0(A). There’s a stack Iso(A, ~d) with k-points the iso

classes of A-modules dim vector ~d & automorphisms = module
automorphisms.
Iso(A, ~d)(R) = category of (R,A)-modules M = ⊕Mv , with

Mv loc free rank dv/R,

Morphisms = bimodule isomorphism

Important Facts

Iso(A, ~d) ' [Rep(Q, I , ~d)/GL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
Iso(A, ~d).

Note These will never be weighted projective lines because all modules
have k× in their automorphism group!

Daniel Chan joint work with Boris Lerner

Moduli stack of isomorphism classes of A = kQ/I -modules

Fix dim vector ~d ∈ K0(A). There’s a stack Iso(A, ~d) with k-points the iso

classes of A-modules dim vector ~d & automorphisms = module
automorphisms.
Iso(A, ~d)(R) = category of (R,A)-modules M = ⊕Mv , with

Mv loc free rank dv/R,

Morphisms = bimodule isomorphism

Important Facts

Iso(A, ~d) ' [Rep(Q, I , ~d)/GL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
Iso(A, ~d).

Note These will never be weighted projective lines because all modules
have k× in their automorphism group!

Daniel Chan joint work with Boris Lerner

Moduli stack of isomorphism classes of A = kQ/I -modules

Fix dim vector ~d ∈ K0(A). There’s a stack Iso(A, ~d) with k-points the iso

classes of A-modules dim vector ~d & automorphisms = module
automorphisms.
Iso(A, ~d)(R) = category of (R,A)-modules M = ⊕Mv , with

Mv loc free rank dv/R,

Morphisms = bimodule isomorphism

Important Facts

Iso(A, ~d) ' [Rep(Q, I , ~d)/GL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
Iso(A, ~d).

Note These will never be weighted projective lines because all modules
have k× in their automorphism group!

Daniel Chan joint work with Boris Lerner

Moduli stack of isomorphism classes of A = kQ/I -modules

Fix dim vector ~d ∈ K0(A). There’s a stack Iso(A, ~d) with k-points the iso

classes of A-modules dim vector ~d & automorphisms = module
automorphisms.
Iso(A, ~d)(R) = category of (R,A)-modules M = ⊕Mv , with

Mv loc free rank dv/R,

Morphisms = bimodule isomorphism

Important Facts

Iso(A, ~d) ' [Rep(Q, I , ~d)/GL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
Iso(A, ~d).

Note These will never be weighted projective lines because all modules
have k× in their automorphism group!

Daniel Chan joint work with Boris Lerner

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k×. Define (when
some dv = 1 else need stackification)

RigIso(A, ~d)(R) has same objects as Iso(A, ~d)(R), but

a morphism in Hom(M,N) is an equivalence class of
(R,A)-bimodule isomorphisms ψ :M−→ L⊗R N where L is a line
bundle on R,

ψ :M−→ L⊗R N , ψ′ :M−→ L′ ⊗R N are equivalent if there’s an
iso l : L −→ L′ st ψ′ = (l ⊗ 1)ψ.

Important Facts

RigIso(A, ~d) ' [Rep(Q, I , ~d)/PGL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
RigIso(A, ~d), unique up to line bundle.

Daniel Chan joint work with Boris Lerner

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k×. Define (when
some dv = 1 else need stackification)

RigIso(A, ~d)(R) has same objects as Iso(A, ~d)(R), but

a morphism in Hom(M,N) is an equivalence class of
(R,A)-bimodule isomorphisms ψ :M−→ L⊗R N where L is a line
bundle on R,

ψ :M−→ L⊗R N , ψ′ :M−→ L′ ⊗R N are equivalent if there’s an
iso l : L −→ L′ st ψ′ = (l ⊗ 1)ψ.

Important Facts

RigIso(A, ~d) ' [Rep(Q, I , ~d)/PGL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
RigIso(A, ~d), unique up to line bundle.

Daniel Chan joint work with Boris Lerner

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k×. Define (when
some dv = 1 else need stackification)

RigIso(A, ~d)(R) has same objects as Iso(A, ~d)(R), but

a morphism in Hom(M,N) is an equivalence class of
(R,A)-bimodule isomorphisms ψ :M−→ L⊗R N where L is a line
bundle on R,

ψ :M−→ L⊗R N , ψ′ :M−→ L′ ⊗R N are equivalent if there’s an
iso l : L −→ L′ st ψ′ = (l ⊗ 1)ψ.

Important Facts

RigIso(A, ~d) ' [Rep(Q, I , ~d)/PGL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
RigIso(A, ~d), unique up to line bundle.

Daniel Chan joint work with Boris Lerner

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k×. Define (when
some dv = 1 else need stackification)

RigIso(A, ~d)(R) has same objects as Iso(A, ~d)(R), but

a morphism in Hom(M,N) is an equivalence class of
(R,A)-bimodule isomorphisms ψ :M−→ L⊗R N where L is a line
bundle on R,

ψ :M−→ L⊗R N , ψ′ :M−→ L′ ⊗R N are equivalent if there’s an
iso l : L −→ L′ st ψ′ = (l ⊗ 1)ψ.

Important Facts

RigIso(A, ~d) ' [Rep(Q, I , ~d)/PGL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
RigIso(A, ~d), unique up to line bundle.

Daniel Chan joint work with Boris Lerner

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k×. Define (when
some dv = 1 else need stackification)

RigIso(A, ~d)(R) has same objects as Iso(A, ~d)(R), but

a morphism in Hom(M,N) is an equivalence class of
(R,A)-bimodule isomorphisms ψ :M−→ L⊗R N where L is a line
bundle on R,

ψ :M−→ L⊗R N , ψ′ :M−→ L′ ⊗R N are equivalent if there’s an
iso l : L −→ L′ st ψ′ = (l ⊗ 1)ψ.

Important Facts

RigIso(A, ~d) ' [Rep(Q, I , ~d)/PGL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
RigIso(A, ~d), unique up to line bundle.

Daniel Chan joint work with Boris Lerner

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k×. Define (when
some dv = 1 else need stackification)

RigIso(A, ~d)(R) has same objects as Iso(A, ~d)(R), but

a morphism in Hom(M,N) is an equivalence class of
(R,A)-bimodule isomorphisms ψ :M−→ L⊗R N where L is a line
bundle on R,

ψ :M−→ L⊗R N , ψ′ :M−→ L′ ⊗R N are equivalent if there’s an
iso l : L −→ L′ st ψ′ = (l ⊗ 1)ψ.

Important Facts

RigIso(A, ~d) ' [Rep(Q, I , ~d)/PGL(~d)].

Tautologically, there is a universal A-module U = ⊕Uv over
RigIso(A, ~d), unique up to line bundle.

Daniel Chan joint work with Boris Lerner

Serre functor map RigIso− → RigIso

Assume now gl. dimA <∞ & write DA = Homk(A, k).

Recall we have a Serre functor ν = −⊗L
A DA on Db

fg (A). Define
νd = ν ◦ [−d].

Given a k-point of RigIso(A, ~d) i.e. A-module M, νdM may or may not

define a k-point of RigIso(A, ~d).

Proposition

The locus of modules where it does, defines a locally closed substack
RigIso(A, ~d)0 of RigIso(A, ~d). It is open if d = pdDA or pdDA− 1.

We hence obtain a partially defined self-map

νd : RigIso(A, ~d)0 −→ RigIso(A, ~d)

Daniel Chan joint work with Boris Lerner

Serre functor map RigIso− → RigIso

Assume now gl. dimA <∞ & write DA = Homk(A, k).

Recall we have a Serre functor ν = −⊗L
A DA on Db

fg (A).

Define
νd = ν ◦ [−d].

Given a k-point of RigIso(A, ~d) i.e. A-module M, νdM may or may not

define a k-point of RigIso(A, ~d).

Proposition

The locus of modules where it does, defines a locally closed substack
RigIso(A, ~d)0 of RigIso(A, ~d). It is open if d = pdDA or pdDA− 1.

We hence obtain a partially defined self-map

νd : RigIso(A, ~d)0 −→ RigIso(A, ~d)

Daniel Chan joint work with Boris Lerner

Serre functor map RigIso− → RigIso

Assume now gl. dimA <∞ & write DA = Homk(A, k).

Recall we have a Serre functor ν = −⊗L
A DA on Db

fg (A). Define
νd = ν ◦ [−d].

Given a k-point of RigIso(A, ~d) i.e. A-module M, νdM may or may not

define a k-point of RigIso(A, ~d).

Proposition

The locus of modules where it does, defines a locally closed substack
RigIso(A, ~d)0 of RigIso(A, ~d). It is open if d = pdDA or pdDA− 1.

We hence obtain a partially defined self-map

νd : RigIso(A, ~d)0 −→ RigIso(A, ~d)

Daniel Chan joint work with Boris Lerner

Serre functor map RigIso− → RigIso

Assume now gl. dimA <∞ & write DA = Homk(A, k).

Recall we have a Serre functor ν = −⊗L
A DA on Db

fg (A). Define
νd = ν ◦ [−d].

Given a k-point of RigIso(A, ~d) i.e. A-module M, νdM may or may not

define a k-point of RigIso(A, ~d).

Proposition

The locus of modules where it does, defines a locally closed substack
RigIso(A, ~d)0 of RigIso(A, ~d). It is open if d = pdDA or pdDA− 1.

We hence obtain a partially defined self-map

νd : RigIso(A, ~d)0 −→ RigIso(A, ~d)

Daniel Chan joint work with Boris Lerner

Serre functor map RigIso− → RigIso

Assume now gl. dimA <∞ & write DA = Homk(A, k).

Recall we have a Serre functor ν = −⊗L
A DA on Db

fg (A). Define
νd = ν ◦ [−d].

Given a k-point of RigIso(A, ~d) i.e. A-module M, νdM may or may not

define a k-point of RigIso(A, ~d).

Proposition

The locus of modules where it does, defines a locally closed substack
RigIso(A, ~d)0 of RigIso(A, ~d).

It is open if d = pdDA or pdDA− 1.

We hence obtain a partially defined self-map

νd : RigIso(A, ~d)0 −→ RigIso(A, ~d)

Daniel Chan joint work with Boris Lerner

Serre functor map RigIso− → RigIso

Assume now gl. dimA <∞ & write DA = Homk(A, k).

Recall we have a Serre functor ν = −⊗L
A DA on Db

fg (A). Define
νd = ν ◦ [−d].

Given a k-point of RigIso(A, ~d) i.e. A-module M, νdM may or may not

define a k-point of RigIso(A, ~d).

Proposition

The locus of modules where it does, defines a locally closed substack
RigIso(A, ~d)0 of RigIso(A, ~d). It is open if d = pdDA or pdDA− 1.

We hence obtain a partially defined self-map

νd : RigIso(A, ~d)0 −→ RigIso(A, ~d)

Daniel Chan joint work with Boris Lerner

The Serre stable moduli stack

The Serre stable moduli stack RigIso(A, ~d)S is the fixed point stack i.e.

fibre product

RigIso(A, ~d)S −−−−→ RigIso(A, ~d)0y yΓνd

RigIso(A, ~d)
∆−−−−→ RigIso(A, ~d)× RigIso(A, ~d)

The category of k-points RigIso(A, ~d)S(k) has

Objects: isomorphisms M
∼−→ νdM where M is an A-module dim

vector ~d

Morphisms: diagrams of isomorphisms which commute up to scalar

M −−−−→ νdM

θ

y yνdθ
N −−−−→ νdN

Objects of RigIso(A, ~d)S(R) are (R,A)-bimodule isomorphisms
M' L⊗RM⊗L

A DA[−d], where L is a line bundle.

Daniel Chan joint work with Boris Lerner

The Serre stable moduli stack

The Serre stable moduli stack RigIso(A, ~d)S is the fixed point stack i.e.
fibre product

RigIso(A, ~d)S −−−−→ RigIso(A, ~d)0y yΓνd

RigIso(A, ~d)
∆−−−−→ RigIso(A, ~d)× RigIso(A, ~d)

The category of k-points RigIso(A, ~d)S(k) has

Objects: isomorphisms M
∼−→ νdM where M is an A-module dim

vector ~d

Morphisms: diagrams of isomorphisms which commute up to scalar

M −−−−→ νdM

θ

y yνdθ
N −−−−→ νdN

Objects of RigIso(A, ~d)S(R) are (R,A)-bimodule isomorphisms
M' L⊗RM⊗L

A DA[−d], where L is a line bundle.

Daniel Chan joint work with Boris Lerner

The Serre stable moduli stack

The Serre stable moduli stack RigIso(A, ~d)S is the fixed point stack i.e.
fibre product

RigIso(A, ~d)S −−−−→ RigIso(A, ~d)0y yΓνd

RigIso(A, ~d)
∆−−−−→ RigIso(A, ~d)× RigIso(A, ~d)

The category of k-points RigIso(A, ~d)S(k) has

Objects: isomorphisms M
∼−→ νdM where M is an A-module dim

vector ~d

Morphisms: diagrams of isomorphisms which commute up to scalar

M −−−−→ νdM

θ

y yνdθ
N −−−−→ νdN

Objects of RigIso(A, ~d)S(R) are (R,A)-bimodule isomorphisms
M' L⊗RM⊗L

A DA[−d], where L is a line bundle.

Daniel Chan joint work with Boris Lerner

The Serre stable moduli stack

The Serre stable moduli stack RigIso(A, ~d)S is the fixed point stack i.e.
fibre product

RigIso(A, ~d)S −−−−→ RigIso(A, ~d)0y yΓνd

RigIso(A, ~d)
∆−−−−→ RigIso(A, ~d)× RigIso(A, ~d)

The category of k-points RigIso(A, ~d)S(k) has

Objects: isomorphisms M
∼−→ νdM where M is an A-module dim

vector ~d

Morphisms: diagrams of isomorphisms which commute up to scalar

M −−−−→ νdM

θ

y yνdθ
N −−−−→ νdN

Objects of RigIso(A, ~d)S(R) are (R,A)-bimodule isomorphisms
M' L⊗RM⊗L

A DA[−d], where L is a line bundle.

Daniel Chan joint work with Boris Lerner

The Serre stable moduli stack

The Serre stable moduli stack RigIso(A, ~d)S is the fixed point stack i.e.
fibre product

RigIso(A, ~d)S −−−−→ RigIso(A, ~d)0y yΓνd

RigIso(A, ~d)
∆−−−−→ RigIso(A, ~d)× RigIso(A, ~d)

The category of k-points RigIso(A, ~d)S(k) has

Objects: isomorphisms M
∼−→ νdM where M is an A-module dim

vector ~d

Morphisms: diagrams of isomorphisms which commute up to scalar

M −−−−→ νdM

θ

y yνdθ
N −−−−→ νdN

Objects of RigIso(A, ~d)S(R) are (R,A)-bimodule isomorphisms
M' L⊗RM⊗L

A DA[−d], where L is a line bundle.
Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w ,

~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters points: eg Kronecker algebra

Q = Kronecker quiver v //// w , ~d = ~1 = (1 1). A = kQ, d = 1.

M : k
0 //
0
// k

has a projective summand 0 //// k so M 6' ν1M

=⇒ no corresponding point of RigIso(A,~1)S .

However, for the universal representation

U = OP1

x //
y
// OP1 (1)

we have U ⊗L
A DA[−1] ' ωP1 ⊗P1 U & in fact

Proposition

RigIso(A,~1)S ' P1.

A similar result holds for the Beilinson algebra derived equivalent to Pd .

Daniel Chan joint work with Boris Lerner

Serre stability alters automorphism groups

A = canonical algebra of P1(3y). Let d = 1, ~d = ~1.

M := k
0 // k

0

��>>>>>>>>

k

0

@@�������� 1 // k

is the direct sum of a ν1-orbit corresponding to the 3 simple sheaves at
y = 0.

automorphisms of M in RigIso are (k×)3/k× ' (k×)2.

automorphisms of M in RigIsoS are µ3!

Why

M −−−−→ ν1M

θ∈(k×)3

y yνdθ
M −−−−→ ν1M

, νdθ =

0 1 0
0 0 1
1 0 0

 θ

commutes up to scalar ⇐⇒ θ is an e-vector of the permutation matrix.

Daniel Chan joint work with Boris Lerner

Serre stability alters automorphism groups

A = canonical algebra of P1(3y). Let d = 1, ~d = ~1.

M := k
0 // k

0

��>>>>>>>>

k

0

@@�������� 1 // k

is the direct sum of a ν1-orbit corresponding to the 3 simple sheaves at
y = 0.

automorphisms of M in RigIso are (k×)3/k× ' (k×)2.

automorphisms of M in RigIsoS are µ3!

Why

M −−−−→ ν1M

θ∈(k×)3

y yνdθ
M −−−−→ ν1M

, νdθ =

0 1 0
0 0 1
1 0 0

 θ

commutes up to scalar ⇐⇒ θ is an e-vector of the permutation matrix.

Daniel Chan joint work with Boris Lerner

Serre stability alters automorphism groups

A = canonical algebra of P1(3y). Let d = 1, ~d = ~1.

M := k
0 // k

0

��>>>>>>>>

k

0

@@�������� 1 // k

is the direct sum of a ν1-orbit corresponding to the 3 simple sheaves at
y = 0.

automorphisms of M in RigIso are (k×)3/k× ' (k×)2.

automorphisms of M in RigIsoS are µ3!

Why

M −−−−→ ν1M

θ∈(k×)3

y yνdθ
M −−−−→ ν1M

, νdθ =

0 1 0
0 0 1
1 0 0

 θ

commutes up to scalar ⇐⇒ θ is an e-vector of the permutation matrix.

Daniel Chan joint work with Boris Lerner

Serre stability alters automorphism groups

A = canonical algebra of P1(3y). Let d = 1, ~d = ~1.

M := k
0 // k

0

��>>>>>>>>

k

0

@@�������� 1 // k

is the direct sum of a ν1-orbit corresponding to the 3 simple sheaves at
y = 0.

automorphisms of M in RigIso are (k×)3/k× ' (k×)2.

automorphisms of M in RigIsoS are µ3!

Why

M −−−−→ ν1M

θ∈(k×)3

y yνdθ
M −−−−→ ν1M

, νdθ =

0 1 0
0 0 1
1 0 0

 θ

commutes up to scalar ⇐⇒ θ is an e-vector of the permutation matrix.

Daniel Chan joint work with Boris Lerner

Serre stability alters automorphism groups

A = canonical algebra of P1(3y). Let d = 1, ~d = ~1.

M := k
0 // k

0

��>>>>>>>>

k

0

@@�������� 1 // k

is the direct sum of a ν1-orbit corresponding to the 3 simple sheaves at
y = 0.

automorphisms of M in RigIso are (k×)3/k× ' (k×)2.

automorphisms of M in RigIsoS are µ3!

Why

M −−−−→ ν1M

θ∈(k×)3

y yνdθ
M −−−−→ ν1M

, νdθ =

0 1 0
0 0 1
1 0 0

 θ

commutes up to scalar ⇐⇒ θ is an e-vector of the permutation matrix.

Daniel Chan joint work with Boris Lerner

Serre stability alters automorphism groups

A = canonical algebra of P1(3y). Let d = 1, ~d = ~1.

M := k
0 // k

0

��>>>>>>>>

k

0

@@�������� 1 // k

is the direct sum of a ν1-orbit corresponding to the 3 simple sheaves at
y = 0.

automorphisms of M in RigIso are (k×)3/k× ' (k×)2.

automorphisms of M in RigIsoS are µ3!

Why

M −−−−→ ν1M

θ∈(k×)3

y yνdθ
M −−−−→ ν1M

, νdθ =

0 1 0
0 0 1
1 0 0

 θ

commutes up to scalar ⇐⇒ θ is an e-vector of the permutation matrix.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd . We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable. If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd . We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable. If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd .

We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable. If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd . We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable. If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd . We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable.

If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd . We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable. If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd . We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable. If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

The k-points of RigIsoS

Note νd induces a (shifted) Coxeter transformation on K0(A).

If M ∈ modA is Serre stable in sense M ' νdM, then ~d := ~dimM is fixed
by νd . We say ~d is Coxeter stable.

Proposition

Let M be a Serre stable module with ~dimM minimal Coxeter stable. If
EndA M is semisimple then

Any two isomorphisms θ : M −→ νdM, θ′ : M −→ νdM are
isomorphic in RigIsoS .

The automorphism group in RigIsoS(k) of any such θ is µp where
p = no. Wedderburn components of EndA M.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano

i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular.

Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W

A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W &

T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A

& the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces,

but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.

The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Some theorems

Theorem (C.-Lerner)

Let W be a weighted projective line which is Fano or anti-Fano i.e. ω∓1
W

is ample or equiv, is not tubular. Let

T = ⊕Tv be a basic tilting bundle on W
A = EndW T .

Then RigIso(A, ~dimT)S 'W & T is dual to the universal representation.

Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let A = canonical algebra. Then RigIso(A,~1)S is a weighted projective
line derived equivalent to A & the universal representation is dual to the
tilting bundle given earlier.

Abdelghadir-Ueda have also exhibited weighted projective lines as
moduli spaces, but of enriched quiver representations.
The proof of the derived equivalence is via Bridgeland-King-Reid
theory and is independent of Geigle-Lenzing’s.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety.

Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism,

and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

Reminder on Bridgeland-King-Reid theory

Let W be a smooth weighted projective variety. Then the set Ω of simple
sheaves is a spanning class for CohW.

Let T be an (OW,A)-bimodule for some fin dim algebra A which is left
locally free &

F = RHomW(T ,−) : Db
c (W) −→ Db

fg (A)

Theorem(Bridgeland-King-Reid)

Suppose for all S,S ′ ∈ Ω we have

F : ExtiW(S,S ′) −→ ExtiA(FS,FS ′) is an isomorphism, and

ν(FS) ' F (ωW ⊗W S).

Then F is a derived equivalence.

Remark Serre stability condition makes checking the 2nd condition easy.

Daniel Chan joint work with Boris Lerner

A fresh look at the canonical algebra A

Step 1 Choose ~d : For RigIsoS 6= ∅ need ~d fixed by Coxeter
transformation = ν1 on K0(A). Use ~d = ~1 ∵ it works and generates all
such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

M := k
b // k

c

��>>>>>>>>

k

a

@@�������� 1 // k

, ν1M := k
a // k

b

��>>>>>>>>

k

c

@@�������� 1 // k

Note iso class determined by product abc

Step 3 Guess a universal family/moduli space:

k[x]
x // k[x]

x

!!DDDDDDDD

k[x]

x

==zzzzzzzz
1 // k[x]

is a µ3-equivariant family on A1
x . See RigIsoS ' P1(3y).

Daniel Chan joint work with Boris Lerner

A fresh look at the canonical algebra A

Step 1 Choose ~d : For RigIsoS 6= ∅ need ~d fixed by Coxeter
transformation = ν1 on K0(A).

Use ~d = ~1 ∵ it works and generates all
such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

M := k
b // k

c

��>>>>>>>>

k

a

@@�������� 1 // k

, ν1M := k
a // k

b

��>>>>>>>>

k

c

@@�������� 1 // k

Note iso class determined by product abc

Step 3 Guess a universal family/moduli space:

k[x]
x // k[x]

x

!!DDDDDDDD

k[x]

x

==zzzzzzzz
1 // k[x]

is a µ3-equivariant family on A1
x . See RigIsoS ' P1(3y).

Daniel Chan joint work with Boris Lerner

A fresh look at the canonical algebra A

Step 1 Choose ~d : For RigIsoS 6= ∅ need ~d fixed by Coxeter
transformation = ν1 on K0(A). Use ~d = ~1 ∵ it works and generates all
such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

M := k
b // k

c

��>>>>>>>>

k

a

@@�������� 1 // k

, ν1M := k
a // k

b

��>>>>>>>>

k

c

@@�������� 1 // k

Note iso class determined by product abc

Step 3 Guess a universal family/moduli space:

k[x]
x // k[x]

x

!!DDDDDDDD

k[x]

x

==zzzzzzzz
1 // k[x]

is a µ3-equivariant family on A1
x . See RigIsoS ' P1(3y).

Daniel Chan joint work with Boris Lerner

A fresh look at the canonical algebra A

Step 1 Choose ~d : For RigIsoS 6= ∅ need ~d fixed by Coxeter
transformation = ν1 on K0(A). Use ~d = ~1 ∵ it works and generates all
such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

M := k
b // k

c

��>>>>>>>>

k

a

@@�������� 1 // k

, ν1M := k
a // k

b

��>>>>>>>>

k

c

@@�������� 1 // k

Note iso class determined by product abc

Step 3 Guess a universal family/moduli space:

k[x]
x // k[x]

x

!!DDDDDDDD

k[x]

x

==zzzzzzzz
1 // k[x]

is a µ3-equivariant family on A1
x . See RigIsoS ' P1(3y).

Daniel Chan joint work with Boris Lerner

A fresh look at the canonical algebra A

Step 1 Choose ~d : For RigIsoS 6= ∅ need ~d fixed by Coxeter
transformation = ν1 on K0(A). Use ~d = ~1 ∵ it works and generates all
such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

M := k
b // k

c

��>>>>>>>>

k

a

@@�������� 1 // k

, ν1M := k
a // k

b

��>>>>>>>>

k

c

@@�������� 1 // k

Note iso class determined by product abc

Step 3 Guess a universal family/moduli space:

k[x]
x // k[x]

x

!!DDDDDDDD

k[x]

x

==zzzzzzzz
1 // k[x]

is a µ3-equivariant family on A1
x . See RigIsoS ' P1(3y).

Daniel Chan joint work with Boris Lerner

A fresh look at the canonical algebra A

Step 1 Choose ~d : For RigIsoS 6= ∅ need ~d fixed by Coxeter
transformation = ν1 on K0(A). Use ~d = ~1 ∵ it works and generates all
such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

M := k
b // k

c

��>>>>>>>>

k

a

@@�������� 1 // k

, ν1M := k
a // k

b

��>>>>>>>>

k

c

@@�������� 1 // k

Note iso class determined by product abc

Step 3 Guess a universal family/moduli space:

k[x]
x // k[x]

x

!!DDDDDDDD

k[x]

x

==zzzzzzzz
1 // k[x]

is a µ3-equivariant family on A1
x . See RigIsoS ' P1(3y).

Daniel Chan joint work with Boris Lerner

Remark on stable reduction in this case

For c ∈ k − 0, we get a Serre stable family

Mc := k
1 // k

1

��>>>>>>>>

k

c

@@�������� 1 // k

which does not immediately extend to c = 0. Need first adjoin 3
√
c to get

M 3
√
c := k

3
√
c // k

3
√
c

��>>>>>>>>

k

3
√
c
@@�������� 1 // k

Daniel Chan joint work with Boris Lerner

Remark on stable reduction in this case

For c ∈ k − 0, we get a Serre stable family

Mc := k
1 // k

1

��>>>>>>>>

k

c

@@�������� 1 // k

which does not immediately extend to c = 0. Need first adjoin 3
√
c to get

M 3
√
c := k

3
√
c // k

3
√
c

��>>>>>>>>

k

3
√
c
@@�������� 1 // k

Daniel Chan joint work with Boris Lerner

Remark on stable reduction in this case

For c ∈ k − 0, we get a Serre stable family

Mc := k
1 // k

1

��>>>>>>>>

k

c

@@�������� 1 // k

which does not immediately extend to c = 0.

Need first adjoin 3
√
c to get

M 3
√
c := k

3
√
c // k

3
√
c

��>>>>>>>>

k

3
√
c
@@�������� 1 // k

Daniel Chan joint work with Boris Lerner

Remark on stable reduction in this case

For c ∈ k − 0, we get a Serre stable family

Mc := k
1 // k

1

��>>>>>>>>

k

c

@@�������� 1 // k

which does not immediately extend to c = 0. Need first adjoin 3
√
c to get

M 3
√
c := k

3
√
c // k

3
√
c

��>>>>>>>>

k

3
√
c
@@�������� 1 // k

Daniel Chan joint work with Boris Lerner

Extra Comments

Method “works” because Serre stable moduli stack of “skyscraper
sheaves” is the tautological moduli problem that recovers many
stacks.

Ideally we can apply Bridgeland-King-Reid theory to obtain
independently many derived equivalences. Problem is we don’t have
many general results about the Serre stable moduli stack e.g. need a
stable reduction theorem.

For tame hereditary algebras, the preprojective algebra arises
naturally in attempting to construct Serre stable objects.

Case where you insert weights on intersecting divisors fails. Perhaps
can be fixed by using the cotangent bundle.

Daniel Chan joint work with Boris Lerner

Extra Comments

Method “works” because Serre stable moduli stack of “skyscraper
sheaves” is the tautological moduli problem that recovers many
stacks.

Ideally we can apply Bridgeland-King-Reid theory to obtain
independently many derived equivalences. Problem is we don’t have
many general results about the Serre stable moduli stack e.g. need a
stable reduction theorem.

For tame hereditary algebras, the preprojective algebra arises
naturally in attempting to construct Serre stable objects.

Case where you insert weights on intersecting divisors fails. Perhaps
can be fixed by using the cotangent bundle.

Daniel Chan joint work with Boris Lerner

Extra Comments

Method “works” because Serre stable moduli stack of “skyscraper
sheaves” is the tautological moduli problem that recovers many
stacks.

Ideally we can apply Bridgeland-King-Reid theory to obtain
independently many derived equivalences.

Problem is we don’t have
many general results about the Serre stable moduli stack e.g. need a
stable reduction theorem.

For tame hereditary algebras, the preprojective algebra arises
naturally in attempting to construct Serre stable objects.

Case where you insert weights on intersecting divisors fails. Perhaps
can be fixed by using the cotangent bundle.

Daniel Chan joint work with Boris Lerner

Extra Comments

Method “works” because Serre stable moduli stack of “skyscraper
sheaves” is the tautological moduli problem that recovers many
stacks.

Ideally we can apply Bridgeland-King-Reid theory to obtain
independently many derived equivalences. Problem is we don’t have
many general results about the Serre stable moduli stack e.g. need a
stable reduction theorem.

For tame hereditary algebras, the preprojective algebra arises
naturally in attempting to construct Serre stable objects.

Case where you insert weights on intersecting divisors fails. Perhaps
can be fixed by using the cotangent bundle.

Daniel Chan joint work with Boris Lerner

Extra Comments

Method “works” because Serre stable moduli stack of “skyscraper
sheaves” is the tautological moduli problem that recovers many
stacks.

Ideally we can apply Bridgeland-King-Reid theory to obtain
independently many derived equivalences. Problem is we don’t have
many general results about the Serre stable moduli stack e.g. need a
stable reduction theorem.

For tame hereditary algebras, the preprojective algebra arises
naturally in attempting to construct Serre stable objects.

Case where you insert weights on intersecting divisors fails. Perhaps
can be fixed by using the cotangent bundle.

Daniel Chan joint work with Boris Lerner

Extra Comments

Method “works” because Serre stable moduli stack of “skyscraper
sheaves” is the tautological moduli problem that recovers many
stacks.

Ideally we can apply Bridgeland-King-Reid theory to obtain
independently many derived equivalences. Problem is we don’t have
many general results about the Serre stable moduli stack e.g. need a
stable reduction theorem.

For tame hereditary algebras, the preprojective algebra arises
naturally in attempting to construct Serre stable objects.

Case where you insert weights on intersecting divisors fails. Perhaps
can be fixed by using the cotangent bundle.

Daniel Chan joint work with Boris Lerner

