Algebraic stacks in the representation theory of finite-dimensional algebras

Daniel Chan
joint work with Boris Lerner
University of New South Wales
web.maths.unsw.edu.au/~danielch

October 2015

Introduction

always work over base field k algebraically closed of char 0 .

Introduction

always work over base field k algebraically closed of char 0 .

Motto

Moduli stacks are a fruitful way to study non-commutative algebra, because they are a machine to construct functors.

Introduction

always work over base field k algebraically closed of char 0 .

Motto

Moduli stacks are a fruitful way to study non-commutative algebra, because they are a machine to construct functors.

Plan of talk

Introduction

always work over base field k algebraically closed of char 0 .

Motto

Moduli stacks are a fruitful way to study non-commutative algebra, because they are a machine to construct functors.

Plan of talk

- Recall the variety of representations of a quiver with relations.

Introduction

always work over base field k algebraically closed of char 0 .

Motto

Moduli stacks are a fruitful way to study non-commutative algebra, because they are a machine to construct functors.

Plan of talk

- Recall the variety of representations of a quiver with relations.
- Brief user's guide to stacks in representation theory.

Introduction

always work over base field k algebraically closed of char 0 .

Motto

Moduli stacks are a fruitful way to study non-commutative algebra, because they are a machine to construct functors.

Plan of talk

- Recall the variety of representations of a quiver with relations.
- Brief user's guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack which is derived equivalent to it?

Introduction

always work over base field k algebraically closed of char 0 .

Motto

Moduli stacks are a fruitful way to study non-commutative algebra, because they are a machine to construct functors.

Plan of talk

- Recall the variety of representations of a quiver with relations.
- Brief user's guide to stacks in representation theory.

Question

Given a finite dimensional algebra A, how do you find an algebraic stack which is derived equivalent to it?

We finally,

- introduce a new moduli stack of "Serre stable representations", which gives a first approximation to answering this question.

Quivers and representations

We use the following notation

Quivers and representations

We use the following notation

- quiver $Q=\left(Q_{0}=\right.$ vertices, $Q_{1}=$ edges $)$ without oriented cycles

Quivers and representations

We use the following notation

- quiver $Q=\left(Q_{0}=\right.$ vertices, $Q_{1}=$ edges $)$ without oriented cycles
- $k Q$ the path algebra $\& I \triangleleft k Q$ an admissible ideal of relations

Quivers and representations

We use the following notation

- quiver $Q=\left(Q_{0}=\right.$ vertices, $Q_{1}=$ edges $)$ without oriented cycles
- $k Q$ the path algebra $\& I \triangleleft k Q$ an admissible ideal of relations
- $M=\oplus_{v \in Q_{0}} M_{v}$ is a (right) $A=k Q / I$-module i.e. a representation of Q with relations I.

Quivers and representations

We use the following notation

- quiver $Q=\left(Q_{0}=\right.$ vertices, $Q_{1}=$ edges $)$ without oriented cycles
- $k Q$ the path algebra $\& I \triangleleft k Q$ an admissible ideal of relations
- $M=\oplus_{v \in Q_{0}} M_{v}$ is a (right) $A=k Q / I$-module i.e. a representation of Q with relations I.
- The dimension vector of M is $\operatorname{dim} M=\left(\operatorname{dim}_{k} M_{v}\right)_{v \in Q_{0}} \in \mathbb{Z}^{Q_{0}} \simeq K_{0}(A)$.

Representation variety

Representation variety

Let's classify representations with dim vector $\vec{d}=\left(d_{v}\right)$. Consider one such M.

Representation variety

Let's classify representations with dim vector $\vec{d}=\left(d_{v}\right)$. Consider one such M.

- Picking bases i.e. isomorphisms $M_{v} \simeq k^{d_{v}}$ gives a unique point of

$$
\operatorname{Rep}(Q, \vec{d}):=\prod_{v \rightarrow w \in Q_{1}} \operatorname{Hom}_{k}\left(k^{d_{v}}, k^{d_{w}}\right) .
$$

Representation variety

Let's classify representations with dim vector $\vec{d}=\left(d_{v}\right)$. Consider one such M.

- Picking bases i.e. isomorphisms $M_{v} \simeq k^{d_{v}}$ gives a unique point of

$$
\operatorname{Rep}(Q, \vec{d}):=\prod_{v \rightarrow w \in Q_{1}} \operatorname{Hom}_{k}\left(k^{d_{v}}, k^{d_{w}}\right) .
$$

- Choice of basis is up to group $G L(\vec{d}):=\prod_{v \in Q_{0}} G L\left(d_{v}\right)$.

Representation variety

Let's classify representations with dim vector $\vec{d}=\left(d_{v}\right)$. Consider one such M.

- Picking bases i.e. isomorphisms $M_{v} \simeq k^{d_{v}}$ gives a unique point of

$$
\operatorname{Rep}(Q, \vec{d}):=\prod_{v \rightarrow w \in Q_{1}} \operatorname{Hom}_{k}\left(k^{d_{v}}, k^{d_{w}}\right) .
$$

- Choice of basis is up to group $G L(\vec{d}):=\prod_{v \in Q_{0}} G L\left(d_{v}\right)$.
- If $I \neq 0$, then $k Q / I$-modules correspond to some closed subscheme

$$
\operatorname{Rep}(Q, I, \vec{d}) \subseteq \operatorname{Rep}(Q, \vec{d})
$$

Representation variety

Let's classify representations with dim vector $\vec{d}=\left(d_{v}\right)$. Consider one such M.

- Picking bases i.e. isomorphisms $M_{v} \simeq k^{d_{v}}$ gives a unique point of

$$
\operatorname{Rep}(Q, \vec{d}):=\prod_{v \rightarrow w \in Q_{1}} \operatorname{Hom}_{k}\left(k^{d_{v}}, k^{d_{w}}\right)
$$

- Choice of basis is up to group $G L(\vec{d}):=\prod_{v \in Q_{0}} G L\left(d_{v}\right)$.
- If $I \neq 0$, then $k Q / I$-modules correspond to some closed subscheme

$$
\operatorname{Rep}(Q, I, \vec{d}) \subseteq \operatorname{Rep}(Q, \vec{d})
$$

- $G L(\vec{d})$ acts on $\operatorname{Rep}(Q, I, \vec{d})$ and orbits correspond to isomorphism classes of modules (with dim vector \vec{d}),

Representation variety

Let's classify representations with dim vector $\vec{d}=\left(d_{v}\right)$. Consider one such M.

- Picking bases i.e. isomorphisms $M_{v} \simeq k^{d_{v}}$ gives a unique point of

$$
\operatorname{Rep}(Q, \vec{d}):=\prod_{v \rightarrow w \in Q_{1}} \operatorname{Hom}_{k}\left(k^{d_{v}}, k^{d_{w}}\right)
$$

- Choice of basis is up to group $G L(\vec{d}):=\prod_{v \in Q_{0}} G L\left(d_{v}\right)$.
- If $I \neq 0$, then $k Q / I$-modules correspond to some closed subscheme

$$
\operatorname{Rep}(Q, I, \vec{d}) \subseteq \operatorname{Rep}(Q, \vec{d})
$$

- $G L(\vec{d})$ acts on $\operatorname{Rep}(Q, I, \vec{d})$ and orbits correspond to isomorphism classes of modules (with dim vector \vec{d}),
- stabilisers correspond to automorphism groups of M.

Representation variety

Let's classify representations with dim vector $\vec{d}=\left(d_{v}\right)$. Consider one such M.

- Picking bases i.e. isomorphisms $M_{v} \simeq k^{d_{v}}$ gives a unique point of

$$
\operatorname{Rep}(Q, \vec{d}):=\prod_{v \rightarrow w \in Q_{1}} \operatorname{Hom}_{k}\left(k^{d_{v}}, k^{d_{w}}\right)
$$

- Choice of basis is up to group $G L(\vec{d}):=\prod_{v \in Q_{0}} G L\left(d_{v}\right)$.
- If $I \neq 0$, then $k Q / I$-modules correspond to some closed subscheme

$$
\operatorname{Rep}(Q, I, \vec{d}) \subseteq \operatorname{Rep}(Q, \vec{d})
$$

- $G L(\vec{d})$ acts on $\operatorname{Rep}(Q, I, \vec{d})$ and orbits correspond to isomorphism classes of modules (with dim vector \vec{d}),
- stabilisers correspond to automorphism groups of M.
- The diagonal copy of k^{\times}acts trivially so $P G L(\vec{d}):=G L(\vec{d}) / k^{\times}$also acts.

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w$,

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

Motivating example à la King

$$
\begin{array}{r}
Q=\text { Kronecker quiver } v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) . \\
k \underset{y}{\stackrel{x}{\longrightarrow}} k \in \operatorname{Rep}(Q, \overrightarrow{1}) \simeq k^{2}=\mathbb{A}^{2}
\end{array}
$$

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

$$
k \underset{y}{\stackrel{x}{3}} k \in \operatorname{Rep}(Q, \overrightarrow{1}) \simeq k^{2}=\mathbb{A}^{2}
$$

$P G L(\overrightarrow{1})=k^{\times 2} / k^{\times} \simeq k^{\times}$acts by scaling,

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

$$
k \underset{y}{\stackrel{x}{\rightrightarrows}} k \in \operatorname{Rep}(Q, \overrightarrow{1}) \simeq k^{2}=\mathbb{A}^{2}
$$

$P G L(\overrightarrow{1})=k^{\times 2} / k^{\times} \simeq k^{\times}$acts by scaling, so if we omit $(x, y)=(0,0)$ (explain later) have quotient $(\operatorname{Rep}(Q, \overrightarrow{1})-(0,0)) / P G L \simeq \mathbb{P}^{1}$.

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

$$
k \underset{y}{\stackrel{x}{\rightrightarrows}} k \in \operatorname{Rep}(Q, \overrightarrow{1}) \simeq k^{2}=\mathbb{A}^{2}
$$

$P G L(\overrightarrow{1})=k^{\times 2} / k^{\times} \simeq k^{\times}$acts by scaling, so if we omit $(x, y)=(0,0)$ (explain later) have quotient $(\operatorname{Rep}(Q, \overrightarrow{1})-(0,0)) / P G L \simeq \mathbb{P}^{1}$.
We get a family of modules $M_{(x: y)}=M_{(x: y), v} \underset{y}{\stackrel{x}{\rightrightarrows}} M_{(x: y), w}$ parametrised by $(x: y) \in \mathbb{P}^{1}$ which gives "the" universal representation

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

$$
k \underset{y}{\stackrel{x}{\rightrightarrows}} k \in \operatorname{Rep}(Q, \overrightarrow{1}) \simeq k^{2}=\mathbb{A}^{2}
$$

$P G L(\overrightarrow{1})=k^{\times 2} / k^{\times} \simeq k^{\times}$acts by scaling, so if we omit $(x, y)=(0,0)$ (explain later) have quotient $(\operatorname{Rep}(Q, \overrightarrow{1})-(0,0)) / P G L \simeq \mathbb{P}^{1}$.
We get a family of modules $M_{(x: y)}=M_{(x: y), v} \underset{y}{x} M_{(x: y), w}$ parametrised by $(x: y) \in \mathbb{P}^{1}$ which gives "the" universal representation

$$
\mathcal{U}=\mathcal{O}_{\mathbb{P}^{1}} \xrightarrow[y]{x} \mathcal{O}_{\mathbb{P}^{1}}(1)
$$

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

$$
k \underset{y}{\stackrel{x}{3}} k \in \operatorname{Rep}(Q, \overrightarrow{1}) \simeq k^{2}=\mathbb{A}^{2}
$$

$P G L(\overrightarrow{1})=k^{\times 2} / k^{\times} \simeq k^{\times}$acts by scaling, so if we omit $(x, y)=(0,0)$
(explain later) have quotient $(\operatorname{Rep}(Q, \overrightarrow{1})-(0,0)) / P G L \simeq \mathbb{P}^{1}$.
We get a family of modules $M_{(x: y)}=M_{(x: y), v} \xrightarrow[y]{\stackrel{x}{\rightrightarrows}} M_{(x: y), w}$
parametrised by $(x: y) \in \mathbb{P}^{1}$ which gives "the" universal representation

$$
\mathcal{U}=\mathcal{O}_{\mathbb{P}^{1}} \xrightarrow[y]{x} \mathcal{O}_{\mathbb{P}^{1}}(1)
$$

Interesting Fact

\mathcal{U} is an $\mathcal{O}_{\mathbb{P}^{1}}-A$-bimodule whose dual ${ }_{A} \mathcal{T}_{\mathcal{P}^{1}}=\mathcal{H o m} \mathbb{P}^{1}(\mathcal{U}, \mathcal{O})$ induces inverse derived equivalences

Motivating example à la King

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

$$
k \underset{y}{\stackrel{x}{3}} k \in \operatorname{Rep}(Q, \overrightarrow{1}) \simeq k^{2}=\mathbb{A}^{2}
$$

$P G L(\overrightarrow{1})=k^{\times 2} / k^{\times} \simeq k^{\times}$acts by scaling, so if we omit $(x, y)=(0,0)$ (explain later) have quotient $(\operatorname{Rep}(Q, \overrightarrow{1})-(0,0)) / P G L \simeq \mathbb{P}^{1}$.
We get a family of modules $M_{(x: y)}=M_{(x: y), v} \xrightarrow[y]{\stackrel{x}{\rightrightarrows}} M_{(x: y), w}$ parametrised by $(x: y) \in \mathbb{P}^{1}$ which gives "the" universal representation

$$
\mathcal{U}=\mathcal{O}_{\mathbb{P}^{1}} \xrightarrow[y]{x} \mathcal{O}_{\mathbb{P}^{1}}(1)
$$

Interesting Fact

\mathcal{U} is an $\mathcal{O}_{\mathbb{P}^{1}}-A$-bimodule whose dual ${ }_{A} \mathcal{T}_{\mathcal{P}^{1}}=\mathcal{H o m} \mathbb{P}_{\mathbb{P}^{1}}(\mathcal{U}, \mathcal{O})$ induces inverse derived equivalences

$$
\operatorname{RHom}_{\mathbb{P}^{1}}(\mathcal{T},-): D^{b}\left(\mathbb{P}^{1}\right) \longrightarrow D^{b}(A),-\otimes_{A}^{L} \mathcal{T}: D^{b}(A) \longrightarrow D^{b}\left(\mathbb{P}^{1}\right)
$$

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes.

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X is not determined by its k-points, but is determined by all its R-points (R comm ring). More precisely, it's determined by

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X is not determined by its k-points, but is determined by all its R-points (R comm ring). More precisely, it's determined by

Functor of points

the functor of points of X, which is the covariant functor $h_{X}=\operatorname{Hom}_{\text {Scheme }}(\operatorname{Spec}(-), X):$ CommRing \longrightarrow Set

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X is not determined by its k-points, but is determined by all its R-points (R comm ring). More precisely, it's determined by

Functor of points

the functor of points of X, which is the covariant functor $h_{X}=\operatorname{Hom}_{\text {Scheme }}(\operatorname{Spec}(-), X)$: CommRing \longrightarrow Set
so $h_{X}(R)=\{f: \operatorname{Spec} R \longrightarrow X\}$

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X is not determined by its k-points, but is determined by all its R-points (R comm ring). More precisely, it's determined by

Functor of points

the functor of points of X, which is the covariant functor $h_{X}=\operatorname{Hom}_{\text {Scheme }}(\operatorname{Spec}(-), X)$: CommRing \longrightarrow Set
so $h_{X}(R)=\{f:$ Spec $R \longrightarrow X\}$
Remark Compare with maximal atlas defn of a manifold.

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X is not determined by its k-points, but is determined by all its R-points (R comm ring). More precisely, it's determined by

Functor of points

the functor of points of X, which is the covariant functor $h_{X}=\operatorname{Hom}_{\text {Scheme }}(\operatorname{Spec}(-), X)$: CommRing \longrightarrow Set
so $h_{X}(R)=\{f:$ Spec $R \longrightarrow X\}$
Remark Compare with maximal atlas defn of a manifold. We "categorify" this defn, and let Gpd be the category of groupoids = small categories with all morphisms invertible.

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X is not determined by its k-points, but is determined by all its R-points (R comm ring). More precisely, it's determined by

Functor of points

the functor of points of X, which is the covariant functor $h_{X}=\operatorname{Hom}_{\text {Scheme }}(\operatorname{Spec}(-), X)$: CommRing \longrightarrow Set
so $h_{X}(R)=\{f: \operatorname{Spec} R \longrightarrow X\}$
Remark Compare with maximal atlas defn of a manifold. We "categorify" this defn, and let Gpd be the category of groupoids = small categories with all morphisms invertible.

"Definition" (Stack)

A stack is a pseudo-functor h : CommRing $\longrightarrow G p d+$ lots of axioms.

Stacks: via categorifying Grothendieck's functor of points

To generalise this eg, need to enlarge category of schemes. A scheme X is not determined by its k-points, but is determined by all its R-points (R comm ring). More precisely, it's determined by

Functor of points

the functor of points of X, which is the covariant functor $h_{X}=\operatorname{Hom}_{\text {Scheme }}(\operatorname{Spec}(-), X)$: CommRing \longrightarrow Set
so $h_{X}(R)=\{f: \operatorname{Spec} R \longrightarrow X\}$
Remark Compare with maximal atlas defn of a manifold. We "categorify" this defn, and let Gpd be the category of groupoids = small categories with all morphisms invertible.

"Definition" (Stack)

A stack is a pseudo-functor h : CommRing \longrightarrow Gpd + lots of axioms.
Think of the isomorphism classes of objects in the category $h(k)$ as the " k-points" \& the category now remembers automorphisms.

Example: Stacky group quotients

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.
Want a "stacky" group quotient $[X / G]$ st " k-points" are the G-orbits G.x,

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.
Want a "stacky" group quotient $[X / G]$ st " k-points" are the G-orbits $G . x, \&$ the automorphism group of such a point is $\operatorname{Stab}_{G} x<G$.

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.
Want a "stacky" group quotient $[X / G]$ st " k-points" are the G-orbits $G . x, \&$ the automorphism group of such a point is $\operatorname{Stab}_{G} x<G$.
Recall A scheme morphism $\tilde{U} \longrightarrow U$ is a G-torsor or G-bundle if G acts on \tilde{U} and trivially on U, is G-equivariant and locally on U is the trivial G-torsor $p r: G \times U \longrightarrow U$.

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.
Want a "stacky" group quotient $[X / G]$ st " k-points" are the G-orbits $G . x, \&$ the automorphism group of such a point is $\operatorname{Stab}_{G} x<G$.
Recall A scheme morphism $\tilde{U} \longrightarrow U$ is a G-torsor or G-bundle if G acts on \tilde{U} and trivially on U, is G-equivariant and locally on U is the trivial G-torsor $p r: G \times U \longrightarrow U$.
Motivation There should be a G-torsor $\pi: X \longrightarrow[X / G]$ so an object of $f \in[X / G](R)$ gives a Cartesian square

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.
Want a "stacky" group quotient $[X / G]$ st " k-points" are the G-orbits $G . x, \&$ the automorphism group of such a point is $\operatorname{Stab}_{G} x<G$.
Recall A scheme morphism $\tilde{U} \longrightarrow U$ is a G-torsor or G-bundle if G acts on \tilde{U} and trivially on U, is G-equivariant and locally on U is the trivial G-torsor $p r: G \times U \longrightarrow U$.
Motivation There should be a G-torsor $\pi: X \longrightarrow[X / G]$ so an object of $f \in[X / G](R)$ gives a Cartesian square

$$
\left.\begin{array}{ccc}
\tilde{U} & \xrightarrow{\phi} & X \\
q \downarrow & & \\
& \\
U:= & & \downarrow^{\pi}
\end{array}\right]
$$

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.
Want a "stacky" group quotient $[X / G]$ st " k-points" are the G-orbits $G . x, \&$ the automorphism group of such a point is $\operatorname{Stab}_{G} x<G$.
Recall A scheme morphism $\tilde{U} \longrightarrow U$ is a G-torsor or G-bundle if G acts on \tilde{U} and trivially on U, is G-equivariant and locally on U is the trivial G-torsor $p r: G \times U \longrightarrow U$.
Motivation There should be a G-torsor $\pi: X \longrightarrow[X / G]$ so an object of $f \in[X / G](R)$ gives a Cartesian square

\Longrightarrow objects of $[X / G](R)$ are pairs (ϕ, q) st

Example: Stacky group quotients

Let G be an algebraic group acting on a k-variety X.
Want a "stacky" group quotient $[X / G]$ st " k-points" are the G-orbits $G . x, \&$ the automorphism group of such a point is $\operatorname{Stab}_{G} x<G$.
Recall A scheme morphism $\tilde{U} \longrightarrow U$ is a G-torsor or G-bundle if G acts on \tilde{U} and trivially on U, is G-equivariant and locally on U is the trivial G-torsor $p r: G \times U \longrightarrow U$.
Motivation There should be a G-torsor $\pi: X \longrightarrow[X / G]$ so an object of $f \in[X / G](R)$ gives a Cartesian square

\Longrightarrow objects of $[X / G](R)$ are pairs (ϕ, q) st
$q: \tilde{U} \longrightarrow \operatorname{Spec} R$ is a G-torsor $\& \phi: \tilde{U} \longrightarrow X$ is G-equivariant.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn,

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn, so action free on $x \neq 0$ but $\operatorname{Stab}_{G} 0=\mu_{\rho}$.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn, so action free on $x \neq 0$ but $\operatorname{Stab}_{G} 0=\mu_{p}$.
k-points are parametrised by $y=x^{p}$.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn, so action free on $x \neq 0$ but $\operatorname{Stab}_{G} 0=\mu_{\rho}$.
k-points are parametrised by $y=x^{p}$.

- If $y \neq 0$ then $k[x] /\left(x^{p}-y\right)$ is a simple sheaf on $[X / G]$.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn, so action free on $x \neq 0$ but $\operatorname{Stab}_{G} 0=\mu_{p}$.
k-points are parametrised by $y=x^{p}$.

- If $y \neq 0$ then $k[x] /\left(x^{p}-y\right)$ is a simple sheaf on $[X / G]$.
- If $y=0$, then $k[x] /\left(x^{p}\right)$ is non-split extension of p non-isomorphic simples $k[x] /(x)$ with μ_{p}-action given by the p characters of μ_{p}.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn, so action free on $x \neq 0$ but $\operatorname{Stab}_{G} 0=\mu_{p}$.
k-points are parametrised by $y=x^{p}$.

- If $y \neq 0$ then $k[x] /\left(x^{p}-y\right)$ is a simple sheaf on $[X / G]$.
- If $y=0$, then $k[x] /\left(x^{p}\right)$ is non-split extension of p non-isomorphic simples $k[x] /(x)$ with μ_{p}-action given by the p characters of μ_{p}.

General Fact

If $\tilde{U} \longrightarrow U$ is a G-torsor, then $[\tilde{U} / G] \simeq U$.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn, so action free on $x \neq 0$ but $\operatorname{Stab}_{G} 0=\mu_{p}$.
k-points are parametrised by $y=x^{p}$.

- If $y \neq 0$ then $k[x] /\left(x^{p}-y\right)$ is a simple sheaf on $[X / G]$.
- If $y=0$, then $k[x] /\left(x^{p}\right)$ is non-split extension of p non-isomorphic simples $k[x] /(x)$ with μ_{p}-action given by the p characters of μ_{p}.

General Fact

If $\tilde{U} \longrightarrow U$ is a G-torsor, then $[\tilde{U} / G] \simeq U$. Here $\left[\left(\mathbb{A}_{x}^{1}-0\right) / \mu_{\rho}\right] \simeq \mathbb{A}_{y}^{1}-0$.

Effect of stabiliser groups

Define category of coherent sheaves $\operatorname{Coh}[X / G]=$ category of G-equivariant coherent sheaves on X e.g. if X smooth, $\omega_{[X / G]}:=\omega_{X}$.
Consider case $X=\mathbb{A}_{x}^{1} \& G=\mu_{p}=\langle\zeta=\sqrt[p]{1}\rangle$ acts by multn, so action free on $x \neq 0$ but $\operatorname{Stab}_{G} 0=\mu_{p}$.
k-points are parametrised by $y=x^{p}$.

- If $y \neq 0$ then $k[x] /\left(x^{p}-y\right)$ is a simple sheaf on $[X / G]$.
- If $y=0$, then $k[x] /\left(x^{p}\right)$ is non-split extension of p non-isomorphic simples $k[x] /(x)$ with μ_{p}-action given by the p characters of μ_{p}.

General Fact

If $\tilde{U} \longrightarrow U$ is a G-torsor, then $[\tilde{U} / G] \simeq U$. Here $\left[\left(\mathbb{A}_{x}^{1}-0\right) / \mu_{\rho}\right] \simeq \mathbb{A}_{y}^{1}-0$.

- $\omega_{X}=k[x] d x \& \omega_{[X / G]} \otimes_{[X / G]}-$ permutes the simples with $x=0$ cyclically.

Families through stacky points

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{x}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$.

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{x}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$. The rational inverse $\phi: \mathbb{A}_{y}^{1}-0 \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ given by

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{\chi}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$. The rational inverse $\phi: \mathbb{A}_{y}^{1}-0 \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ given by

$$
\begin{aligned}
& \mathbb{A}_{x}^{1}-0 \longrightarrow \mathbb{A}_{x}^{1} \\
& x \mapsto x^{p}=y \\
& \perp \\
& \mathbb{A}_{y}^{1}-0
\end{aligned}
$$

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{x}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$. The rational inverse $\phi: \mathbb{A}_{y}^{1}-0 \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ given by

$$
\begin{aligned}
& \mathbb{A}_{x}^{1}-0 \longrightarrow \mathbb{A}_{x}^{1} \\
& x \mapsto x^{p}=y \\
& \downarrow \\
& \mathbb{A}_{y}^{1}-0
\end{aligned}
$$

Important Phenomenon

You can't extend ϕ to all of \mathbb{A}_{y}^{1},

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{x}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$. The rational inverse $\phi: \mathbb{A}_{y}^{1}-0 \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ given by

$$
\begin{aligned}
& \mathbb{A}_{x}^{1}-0 \longrightarrow \mathbb{A}_{x}^{1} \\
& x \mapsto x^{p}=y \\
& \perp \\
& \mathbb{A}_{y}^{1}-0
\end{aligned}
$$

Important Phenomenon

You can't extend ϕ to all of \mathbb{A}_{y}^{1}, except by first passing to to an étale cover of $\mathbb{A}_{y}^{1}-0$ as below.

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{x}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$. The rational inverse $\phi: \mathbb{A}_{y}^{1}-0 \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ given by

$$
\begin{aligned}
& \mathbb{A}_{x}^{1}-0 \longrightarrow \mathbb{A}_{x}^{1} \\
& x \mapsto x^{p}=y \\
& \downarrow \\
& \mathbb{A}_{y}^{1}-0
\end{aligned}
$$

Important Phenomenon

You can't extend ϕ to all of \mathbb{A}_{y}^{1}, except by first passing to to an étale cover of $\mathbb{A}_{y}^{1}-0$ as below.

Have tautological quotient map $\mathbb{A}_{x}^{1} \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ defined by

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{x}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$. The rational inverse $\phi: \mathbb{A}_{y}^{1}-0 \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ given by

$$
\begin{aligned}
& \mathbb{A}_{x}^{1}-0 \longrightarrow \mathbb{A}_{x}^{1} \\
& x \mapsto x^{p}=y \\
& \downarrow \\
& \mathbb{A}_{y}^{1}-0
\end{aligned}
$$

Important Phenomenon

You can't extend ϕ to all of \mathbb{A}_{y}^{1}, except by first passing to to an étale cover of $\mathbb{A}_{y}^{1}-0$ as below.

Have tautological quotient map $\mathbb{A}_{x}^{1} \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ defined by

$$
\begin{gathered}
\mu_{p} \times \mathbb{A}_{x}^{1} \xrightarrow{\text { action }} \mathbb{A}_{x}^{1} \\
p r \downarrow \\
\quad \mathbb{A}_{x}^{1}
\end{gathered}
$$

Families through stacky points

Note there is also a "birational" map $\left[\mathbb{A}_{x}^{1} / \mu_{p}\right] \longrightarrow \mathbb{A}_{y}^{1}$. The rational inverse $\phi: \mathbb{A}_{y}^{1}-0 \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ given by

$$
\begin{aligned}
& \mathbb{A}_{x}^{1}-0 \longrightarrow \mathbb{A}_{x}^{1} \\
& x \mapsto x^{p}=y \\
& \perp \\
& \mathbb{A}_{y}^{1}-0
\end{aligned}
$$

Important Phenomenon

You can't extend ϕ to all of \mathbb{A}_{y}^{1}, except by first passing to to an étale cover of $\mathbb{A}_{y}^{1}-0$ as below.

Have tautological quotient map $\mathbb{A}_{x}^{1} \longrightarrow\left[\mathbb{A}_{x}^{1} / \mu_{p}\right]$ defined by

$$
\begin{aligned}
& \mu_{p} \times \mathbb{A}_{x}^{1} \xrightarrow{\text { action }} \mathbb{A}_{x}^{1} \\
& \quad p r \downarrow \\
& \mathbb{A}_{x}^{1}
\end{aligned}
$$

This process is called "stable reduction".

Weighted projective lines

Can define stacks via gluing just as for schemes.

Weighted projective lines

Can define stacks via gluing just as for schemes.
Let $y_{1}, \ldots, y_{n} \in \mathbb{P}^{1}$ and $p_{1}, \ldots, p_{n} \geq 2$ be integer weights.

Weighted projective lines

Can define stacks via gluing just as for schemes.
Let $y_{1}, \ldots, y_{n} \in \mathbb{P}^{1}$ and $p_{1}, \ldots, p_{n} \geq 2$ be integer weights.
There is a stack $\mathbb{W}=\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ and map $\pi: \mathbb{P}^{1}\left(\sum p_{i} y_{i}\right) \longrightarrow \mathbb{P}^{1}$ which is

Weighted projective lines

Can define stacks via gluing just as for schemes.
Let $y_{1}, \ldots, y_{n} \in \mathbb{P}^{1}$ and $p_{1}, \ldots, p_{n} \geq 2$ be integer weights.
There is a stack $\mathbb{W}=\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ and map $\pi: \mathbb{P}^{1}\left(\sum p_{i} y_{i}\right) \longrightarrow \mathbb{P}^{1}$ which is

- an isomorphism away from the y_{i},
- locally near y_{i}, it looks like $\left[\mathbb{A}_{x}^{1} / \mu_{p_{i}}\right] \longrightarrow \mathbb{A}_{y}^{1}$

Weighted projective lines

Can define stacks via gluing just as for schemes.
Let $y_{1}, \ldots, y_{n} \in \mathbb{P}^{1}$ and $p_{1}, \ldots, p_{n} \geq 2$ be integer weights.
There is a stack $\mathbb{W}=\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ and map $\pi: \mathbb{P}^{1}\left(\sum p_{i} y_{i}\right) \longrightarrow \mathbb{P}^{1}$ which is

- an isomorphism away from the y_{i},
- locally near y_{i}, it looks like $\left[\mathbb{A}_{x}^{1} / \mu_{p_{i}}\right] \longrightarrow \mathbb{A}_{y}^{1}$

We call $\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ a weighted projective line.

Weighted projective lines

Can define stacks via gluing just as for schemes.
Let $y_{1}, \ldots, y_{n} \in \mathbb{P}^{1}$ and $p_{1}, \ldots, p_{n} \geq 2$ be integer weights.
There is a stack $\mathbb{W}=\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ and map $\pi: \mathbb{P}^{1}\left(\sum p_{i} y_{i}\right) \longrightarrow \mathbb{P}^{1}$ which is

- an isomorphism away from the y_{i},
- locally near y_{i}, it looks like $\left[\mathbb{A}_{x}^{1} / \mu_{p_{i}}\right] \longrightarrow \mathbb{A}_{y}^{1}$

We call $\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ a weighted projective line.
π^{*} induces an isomorphism

$$
k^{2}=\operatorname{Hom}_{\mathbb{P}^{1}}(\mathcal{O}, \mathcal{O}(1)) \longrightarrow \operatorname{Hom}_{\mathbb{W}}\left(\pi^{*} \mathcal{O}, \pi^{*} \mathcal{O}(1)\right)
$$

Weighted projective lines

Can define stacks via gluing just as for schemes.
Let $y_{1}, \ldots, y_{n} \in \mathbb{P}^{1}$ and $p_{1}, \ldots, p_{n} \geq 2$ be integer weights.
There is a stack $\mathbb{W}=\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ and map $\pi: \mathbb{P}^{1}\left(\sum p_{i} y_{i}\right) \longrightarrow \mathbb{P}^{1}$ which is

- an isomorphism away from the y_{i},
- locally near y_{i}, it looks like $\left[\mathbb{A}_{x}^{1} / \mu_{p_{i}}\right] \longrightarrow \mathbb{A}_{y}^{1}$ We call $\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ a weighted projective line.
π^{*} induces an isomorphism

$$
k^{2}=\operatorname{Hom}_{\mathbb{P}^{1}}(\mathcal{O}, \mathcal{O}(1)) \longrightarrow \operatorname{Hom}_{\mathbb{W}}\left(\pi^{*} \mathcal{O}, \pi^{*} \mathcal{O}(1)\right)
$$

If $f_{i} \in \operatorname{Hom}_{\mathbb{W}}\left(\pi^{*} \mathcal{O}, \pi^{*} \mathcal{O}(1)\right)$ corresponds to y_{i}, then

$$
\operatorname{coker}\left(f_{i}: \pi^{*} \mathcal{O} \longrightarrow \pi^{*} \mathcal{O}(1)\right)
$$

is the non-split extension of p_{i} non-isomorphic simples on previous slide.

Canonical Algebra

Factorising f_{i} into p_{i} inclusions gives

Canonical Algebra

Factorising f_{i} into p_{i} inclusions gives

Thm(Geigle-Lenzing) The above is a tilting bundle on $\mathbb{P}^{1}\left(\sum p_{i} y_{i}\right)$ with endomorphism ring the corresponding canonical algebra.

Moduli stack of isomorphism classes of $A=k Q / I$-modules

Fix dim vector $\vec{d} \in K_{0}(A)$.

Moduli stack of isomorphism classes of $A=k Q / I$-modules

Fix dim vector $\vec{d} \in K_{0}(A)$. There's a stack $\operatorname{Iso}(A, \vec{d})$ with k-points the iso classes of A-modules dim vector $\vec{d} \&$ automorphisms $=$ module automorphisms.

Moduli stack of isomorphism classes of $A=k Q / I$-modules

Fix dim vector $\vec{d} \in K_{0}(A)$. There's a stack Iso (A, \vec{d}) with k-points the iso classes of A-modules dim vector $\vec{d} \&$ automorphisms $=$ module automorphisms.
Iso $(A, \vec{d})(R)=$ category of (R, A)-modules $\mathcal{M}=\oplus \mathcal{M}_{v}$, with

- \mathcal{M}_{v} loc free rank d_{v} / R,

Moduli stack of isomorphism classes of $A=k Q / I$-modules

Fix dim vector $\vec{d} \in K_{0}(A)$. There's a stack $\operatorname{Iso}(A, \vec{d})$ with k-points the iso classes of A-modules dim vector $\vec{d} \&$ automorphisms $=$ module automorphisms.
Iso $(A, \vec{d})(R)=$ category of (R, A)-modules $\mathcal{M}=\oplus \mathcal{M}_{v}$, with

- \mathcal{M}_{v} loc free rank d_{v} / R,
- Morphisms $=$ bimodule isomorphism

Moduli stack of isomorphism classes of $A=k Q / I$-modules

Fix dim vector $\vec{d} \in K_{0}(A)$. There's a stack Iso (A, \vec{d}) with k-points the iso classes of A-modules dim vector $\vec{d} \&$ automorphisms $=$ module automorphisms.
Iso $(A, \vec{d})(R)=$ category of (R, A)-modules $\mathcal{M}=\oplus \mathcal{M}_{v}$, with

- \mathcal{M}_{v} loc free rank d_{v} / R,
- Morphisms = bimodule isomorphism

Important Facts

- $\operatorname{Iso}(A, \vec{d}) \simeq[\operatorname{Rep}(Q, I, \vec{d}) / G L(\vec{d})]$.

Moduli stack of isomorphism classes of $A=k Q / I$-modules

Fix dim vector $\vec{d} \in K_{0}(A)$. There's a stack Iso (A, \vec{d}) with k-points the iso classes of A-modules dim vector $\vec{d} \&$ automorphisms $=$ module automorphisms.
Iso $(A, \vec{d})(R)=$ category of (R, A)-modules $\mathcal{M}=\oplus \mathcal{M}_{v}$, with

- \mathcal{M}_{v} loc free rank d_{v} / R,
- Morphisms = bimodule isomorphism

Important Facts

- $\operatorname{Iso}(A, \vec{d}) \simeq[\operatorname{Rep}(Q, I, \vec{d}) / G L(\vec{d})]$.
- Tautologically, there is a universal A-module $\mathcal{U}=\oplus \mathcal{U}_{v}$ over Iso($A, \vec{d})$.

Moduli stack of isomorphism classes of $A=k Q / I$-modules

Fix dim vector $\vec{d} \in K_{0}(A)$. There's a stack Iso (A, \vec{d}) with k-points the iso classes of A-modules dim vector $\vec{d} \&$ automorphisms $=$ module automorphisms.
Iso $(A, \vec{d})(R)=$ category of (R, A)-modules $\mathcal{M}=\oplus \mathcal{M}_{v}$, with

- \mathcal{M}_{v} loc free rank d_{v} / R,
- Morphisms $=$ bimodule isomorphism

Important Facts

- $\operatorname{Iso}(A, \vec{d}) \simeq[\operatorname{Rep}(Q, I, \vec{d}) / G L(\vec{d})]$.
- Tautologically, there is a universal A-module $\mathcal{U}=\oplus \mathcal{U}_{v}$ over Iso (A, \vec{d}).

Note These will never be weighted projective lines because all modules have k^{\times}in their automorphism group!

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k^{\times}. Define (when some $d_{v}=1$ else need stackification)

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k^{\times}. Define (when some $d_{v}=1$ else need stackification)
$\operatorname{Riglso}(A, \vec{d})(R)$ has same objects as $\operatorname{Iso}(A, \vec{d})(R)$, but

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k^{\times}. Define (when some $d_{v}=1$ else need stackification)
$\operatorname{Riglso}(A, \vec{d})(R)$ has same objects as $\operatorname{Iso}(A, \vec{d})(R)$, but

- a morphism in $\operatorname{Hom}(\mathcal{M}, \mathcal{N})$ is an equivalence class of (R, A)-bimodule isomorphisms $\psi: \mathcal{M} \longrightarrow L \otimes_{R} \mathcal{N}$ where L is a line bundle on R,

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k^{\times}. Define (when some $d_{v}=1$ else need stackification)
$\operatorname{Riglso}(A, \vec{d})(R)$ has same objects as Iso $(A, \vec{d})(R)$, but

- a morphism in $\operatorname{Hom}(\mathcal{M}, \mathcal{N})$ is an equivalence class of (R, A)-bimodule isomorphisms $\psi: \mathcal{M} \longrightarrow L \otimes_{R} \mathcal{N}$ where L is a line bundle on R,
- $\psi: \mathcal{M} \longrightarrow L \otimes_{R} \mathcal{N}, \psi^{\prime}: \mathcal{M} \longrightarrow L^{\prime} \otimes_{R} \mathcal{N}$ are equivalent if there's an iso $I: L \longrightarrow L^{\prime}$ st $\psi^{\prime}=(I \otimes 1) \psi$.

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k^{\times}. Define (when some $d_{v}=1$ else need stackification)
$\operatorname{Riglso}(A, \vec{d})(R)$ has same objects as Iso $(A, \vec{d})(R)$, but

- a morphism in $\operatorname{Hom}(\mathcal{M}, \mathcal{N})$ is an equivalence class of (R, A)-bimodule isomorphisms $\psi: \mathcal{M} \longrightarrow L \otimes_{R} \mathcal{N}$ where L is a line bundle on R,
- $\psi: \mathcal{M} \longrightarrow L \otimes_{R} \mathcal{N}, \psi^{\prime}: \mathcal{M} \longrightarrow L^{\prime} \otimes_{R} \mathcal{N}$ are equivalent if there's an iso $I: L \longrightarrow L^{\prime}$ st $\psi^{\prime}=(I \otimes 1) \psi$.

Important Facts

- $\operatorname{Rig} \operatorname{lso}(A, \vec{d}) \simeq[\operatorname{Rep}(Q, I, \vec{d}) / P G L(\vec{d})]$.

Rigidified moduli stack of A-modules

We rigidify the stack to remove this common copy of k^{\times}. Define (when some $d_{v}=1$ else need stackification)
$\operatorname{Riglso}(A, \vec{d})(R)$ has same objects as $\operatorname{Iso}(A, \vec{d})(R)$, but

- a morphism in $\operatorname{Hom}(\mathcal{M}, \mathcal{N})$ is an equivalence class of (R, A)-bimodule isomorphisms $\psi: \mathcal{M} \longrightarrow L \otimes_{R} \mathcal{N}$ where L is a line bundle on R,
- $\psi: \mathcal{M} \longrightarrow L \otimes_{R} \mathcal{N}, \psi^{\prime}: \mathcal{M} \longrightarrow L^{\prime} \otimes_{R} \mathcal{N}$ are equivalent if there's an iso $I: L \longrightarrow L^{\prime}$ st $\psi^{\prime}=(I \otimes 1) \psi$.

Important Facts

- $\operatorname{Rig} \operatorname{lso}(A, \vec{d}) \simeq[\operatorname{Rep}(Q, I, \vec{d}) / P G L(\vec{d})]$.
- Tautologically, there is a universal A-module $\mathcal{U}=\oplus \mathcal{U}_{v}$ over $\operatorname{Riglso}(A, \vec{d})$, unique up to line bundle.

Serre functor map Riglso - \rightarrow Riglso

Assume now gl. $\operatorname{dim} A<\infty \&$ write $D A=\operatorname{Hom}_{k}(A, k)$.

Serre functor map Riglso - \rightarrow Riglso

Assume now gl. $\operatorname{dim} A<\infty \&$ write $D A=\operatorname{Hom}_{k}(A, k)$.
Recall we have a Serre functor $\nu=-\otimes_{A}^{L} D A$ on $D_{f g}^{b}(A)$.

Serre functor map Riglso - \rightarrow Riglso

Assume now gl. $\operatorname{dim} A<\infty \&$ write $D A=\operatorname{Hom}_{k}(A, k)$.
Recall we have a Serre functor $\nu=-\otimes_{A}^{L} D A$ on $D_{f g}^{b}(A)$. Define $\nu_{d}=\nu \circ[-d]$.

Serre functor map Riglso - \rightarrow Riglso

Assume now gl. $\operatorname{dim} A<\infty \&$ write $D A=\operatorname{Hom}_{k}(A, k)$.
Recall we have a Serre functor $\nu=-\otimes_{A}^{L} D A$ on $D_{f g}^{b}(A)$. Define $\nu_{d}=\nu \circ[-d]$.

Given a k-point of $\operatorname{Riglso}(A, \vec{d})$ i.e. A-module $M, \nu_{d} M$ may or may not define a k-point of $\operatorname{Riglso}(A, \vec{d})$.

Serre functor map Riglso - \rightarrow Riglso

Assume now gl. $\operatorname{dim} A<\infty \&$ write $D A=\operatorname{Hom}_{k}(A, k)$.
Recall we have a Serre functor $\nu=-\otimes_{A}^{L} D A$ on $D_{f g}^{b}(A)$. Define $\nu_{d}=\nu \circ[-d]$.

Given a k-point of $\operatorname{Riglso}(A, \vec{d})$ i.e. A-module $M, \nu_{d} M$ may or may not define a k-point of $\operatorname{Riglso}(A, \vec{d})$.

Proposition

The locus of modules where it does, defines a locally closed substack $\operatorname{Riglso}(A, \vec{d})^{0}$ of Riglso (A, \vec{d}).

Serre functor map Riglso $-\rightarrow$ Riglso

Assume now gl. $\operatorname{dim} A<\infty \&$ write $D A=\operatorname{Hom}_{k}(A, k)$.
Recall we have a Serre functor $\nu=-\otimes_{A}^{L} D A$ on $D_{f g}^{b}(A)$. Define $\nu_{d}=\nu \circ[-d]$.

Given a k-point of $\operatorname{Riglso}(A, \vec{d})$ i.e. A-module $M, \nu_{d} M$ may or may not define a k-point of $\operatorname{Riglso}(A, \vec{d})$.

Proposition

The locus of modules where it does, defines a locally closed substack $\operatorname{Riglso}(A, \vec{d})^{0}$ of Riglso (A, \vec{d}). It is open if $d=\operatorname{pd} D A$ or $\operatorname{pd} D A-1$.

We hence obtain a partially defined self-map

$$
\nu_{d}: \operatorname{Riglso}(A, \vec{d})^{0} \longrightarrow \operatorname{Riglso}(A, \vec{d})
$$

The Serre stable moduli stack
The Serre stable moduli stack Riglso $(A, \vec{d})^{S}$ is the fixed point stack i.e.

The Serre stable moduli stack
The Serre stable moduli stack $\operatorname{Riglso}(A, \vec{d})^{S}$ is the fixed point stack i.e. fibre product

$$
\begin{aligned}
& \operatorname{Riglso}(A, \vec{d})^{S} \longrightarrow \quad \operatorname{Riglso}(A, \vec{d})^{0} \\
& \downarrow \downarrow \Gamma_{\nu_{d}} \\
& \operatorname{Riglso}(A, \vec{d}) \xrightarrow{\Delta} \operatorname{Riglso}(A, \vec{d}) \times \operatorname{Riglso}(A, \vec{d})
\end{aligned}
$$

The Serre stable moduli stack
The Serre stable moduli stack $\operatorname{Riglso}(A, \vec{d})^{S}$ is the fixed point stack i.e. fibre product

The category of k-points Riglso $(A, \vec{d})^{S}(k)$ has

- Objects: isomorphisms $M \xrightarrow{\sim} \nu_{d} M$ where M is an A-module dim vector \vec{d}

The Serre stable moduli stack

The Serre stable moduli stack $\operatorname{Riglso}(A, \vec{d})^{S}$ is the fixed point stack i.e. fibre product

$$
\begin{aligned}
& \operatorname{Riglso}(A, \vec{d})^{S} \longrightarrow \quad \operatorname{Riglso}(A, \vec{d})^{0} \\
& \downarrow \downarrow \Gamma_{\nu_{d}} \\
& \operatorname{Riglso}(A, \vec{d}) \xrightarrow{\Delta} \operatorname{Riglso}(A, \vec{d}) \times \operatorname{Riglso}(A, \vec{d})
\end{aligned}
$$

The category of k-points Riglso $(A, \vec{d})^{S}(k)$ has

- Objects: isomorphisms $M \xrightarrow{\sim} \nu_{d} M$ where M is an A-module dim vector \vec{d}
- Morphisms: diagrams of isomorphisms which commute up to scalar

The Serre stable moduli stack

The Serre stable moduli stack $\operatorname{Riglso}(A, \vec{d})^{S}$ is the fixed point stack i.e. fibre product

$$
\begin{aligned}
& \operatorname{Riglso}(A, \vec{d})^{S} \longrightarrow \quad \operatorname{Riglso}(A, \vec{d})^{0} \\
& \downarrow \quad \downarrow \Gamma_{\nu_{d}} \\
& \operatorname{Riglso}(A, \vec{d}) \xrightarrow{\Delta} \operatorname{Riglso}(A, \vec{d}) \times \operatorname{Riglso}(A, \vec{d})
\end{aligned}
$$

The category of k-points Riglso $(A, \vec{d})^{S}(k)$ has

- Objects: isomorphisms $M \xrightarrow{\sim} \nu_{d} M$ where M is an A-module dim vector \vec{d}
- Morphisms: diagrams of isomorphisms which commute up to scalar

Objects of Riglso $(A, \vec{d})^{S}(R)$ are (R, A)-bimodule isomorphisms $\mathcal{M} \simeq L \otimes_{R} \mathcal{M} \otimes_{A}^{L} D A[-d]$, where L is a line bundle.

Serre stability alters points: eg Kronecker algebra

$Q=$ Kronecker quiver $v \Longrightarrow w$,

Serre stability alters points: eg Kronecker algebra

$$
Q=\text { Kronecker quiver } v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) . A=k Q, d=1 .
$$

Serre stability alters points: eg Kronecker algebra

$$
\begin{gathered}
Q=\text { Kronecker quiver } v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) . A=k Q, d=1 . \\
M: k \underset{0}{0} k
\end{gathered}
$$

has a projective summand $0 \Longrightarrow k$ so $M \not \approx \nu_{1} M$

Serre stability alters points: eg Kronecker algebra

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right) . A=k Q, d=1$.

$$
M: k \underset{0}{\stackrel{0}{\Longrightarrow}} k
$$

has a projective summand $0 \Longrightarrow k$ so $M \not \approx \nu_{1} M$
\Longrightarrow no corresponding point of $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$.

Serre stability alters points: eg Kronecker algebra

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right) . A=k Q, d=1$.

$$
M: k \underset{0}{\stackrel{0}{\Longrightarrow}} k
$$

has a projective summand $0 \Longrightarrow k$ so $M \not \approx \nu_{1} M$
\Longrightarrow no corresponding point of $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$.
However, for the universal representation

$$
\mathcal{U}=\mathcal{O}_{\mathbb{P}^{1}} \underset{y}{\stackrel{x}{\rightrightarrows}} \mathcal{O}_{\mathbb{P}^{1}}(1)
$$

Serre stability alters points: eg Kronecker algebra

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right) . A=k Q, d=1$.

$$
M: k \underset{0}{\stackrel{0}{\Longrightarrow}} k
$$

has a projective summand $0 \Longrightarrow k$ so $M \not \approx \nu_{1} M$
\Longrightarrow no corresponding point of $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$.
However, for the universal representation

$$
\mathcal{U}=\mathcal{O}_{\mathbb{P}^{1}} \underset{y}{\stackrel{x}{\rightrightarrows}} \mathcal{O}_{\mathbb{P}^{1}}(1)
$$

we have $\mathcal{U} \otimes_{A}^{L} D A[-1] \simeq \omega_{\mathbb{P}^{1}} \otimes_{\mathbb{P}^{1}} \mathcal{U}$ \& in fact

Serre stability alters points: eg Kronecker algebra

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right) . A=k Q, d=1$.

$$
M: k \underset{0}{\stackrel{0}{\Longrightarrow}} k
$$

has a projective summand $0 \Longrightarrow k$ so $M \not \approx \nu_{1} M$
\Longrightarrow no corresponding point of $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$.
However, for the universal representation

$$
\mathcal{U}=\mathcal{O}_{\mathbb{P}^{1}} \underset{y}{\stackrel{x}{\rightrightarrows}} \mathcal{O}_{\mathbb{P}^{1}}(1)
$$

we have $\mathcal{U} \otimes_{A}^{L} D A[-1] \simeq \omega_{\mathbb{P}^{1}} \otimes_{\mathbb{P}^{1}} \mathcal{U}$ \& in fact
Proposition
$\operatorname{Riglso}(A, \overrightarrow{1})^{S} \simeq \mathbb{P}^{1}$.

Serre stability alters points: eg Kronecker algebra

$Q=$ Kronecker quiver $v \Longrightarrow w, \quad \vec{d}=\overrightarrow{1}=\left(\begin{array}{ll}1 & 1\end{array}\right) . A=k Q, d=1$.

$$
M: k \underset{0}{\stackrel{0}{\Longrightarrow}} k
$$

has a projective summand $0 \Longrightarrow k$ so $M \not \approx \nu_{1} M$
\Longrightarrow no corresponding point of $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$.
However, for the universal representation

$$
\mathcal{U}=\mathcal{O}_{\mathbb{P}^{1}} \underset{y}{\stackrel{x}{\rightrightarrows}} \mathcal{O}_{\mathbb{P}^{1}}(1)
$$

we have $\mathcal{U} \otimes_{A}^{L} D A[-1] \simeq \omega_{\mathbb{P}^{1}} \otimes_{\mathbb{P}^{1}} \mathcal{U}$ \& in fact
Proposition
$\operatorname{Riglso}(A, \overrightarrow{1})^{S} \simeq \mathbb{P}^{1}$.
A similar result holds for the Beilinson algebra derived equivalent to \mathbb{P}^{d}.

Serre stability alters automorphism groups

$A=$ canonical algebra of $\mathbb{P}^{1}(3 y)$. Let $d=1, \vec{d}=\overrightarrow{1}$.

Serre stability alters automorphism groups

$A=$ canonical algebra of $\mathbb{P}^{1}(3 y)$. Let $d=1, \vec{d}=\overrightarrow{1}$.

Serre stability alters automorphism groups

$A=$ canonical algebra of $\mathbb{P}^{1}(3 y)$. Let $d=1, \vec{d}=\overrightarrow{1}$.

is the direct sum of a ν_{1}-orbit corresponding to the 3 simple sheaves at $y=0$.

Serre stability alters automorphism groups

$A=$ canonical algebra of $\mathbb{P}^{1}(3 y)$. Let $d=1, \vec{d}=\overrightarrow{1}$.

is the direct sum of a ν_{1}-orbit corresponding to the 3 simple sheaves at $y=0$.

- automorphisms of M in Riglso are $\left(k^{\times}\right)^{3} / k^{\times} \simeq\left(k^{\times}\right)^{2}$.

Serre stability alters automorphism groups

$A=$ canonical algebra of $\mathbb{P}^{1}(3 y)$. Let $d=1, \vec{d}=\overrightarrow{1}$.

is the direct sum of a ν_{1}-orbit corresponding to the 3 simple sheaves at $y=0$.

- automorphisms of M in Riglso are $\left(k^{\times}\right)^{3} / k^{\times} \simeq\left(k^{\times}\right)^{2}$.
- automorphisms of M in Riglso ${ }^{5}$ are μ_{3} !

Serre stability alters automorphism groups

$A=$ canonical algebra of $\mathbb{P}^{1}(3 y)$. Let $d=1, \vec{d}=\overrightarrow{1}$.

is the direct sum of a ν_{1}-orbit corresponding to the 3 simple sheaves at $y=0$.

- automorphisms of M in Riglso are $\left(k^{\times}\right)^{3} / k^{\times} \simeq\left(k^{\times}\right)^{2}$.
- automorphisms of M in Riglso ${ }^{s}$ are μ_{3} !

Why

commutes up to scalar $\Longleftrightarrow \theta$ is an e-vector of the permutation matrix.

The k-points of Riglso ${ }^{s}$

The k-points of Riglso ${ }^{S}$

Note ν_{d} induces a (shifted) Coxeter transformation on $K_{0}(A)$.

The k-points of Riglso ${ }^{S}$

Note ν_{d} induces a (shifted) Coxeter transformation on $K_{0}(A)$.
If $M \in \bmod A$ is Serre stable in sense $M \simeq \nu_{d} M$, then $\vec{d}:=\operatorname{dim} M$ is fixed by ν_{d}.

The k-points of Riglso ${ }^{S}$

Note ν_{d} induces a (shifted) Coxeter transformation on $K_{0}(A)$.
If $M \in \bmod A$ is Serre stable in sense $M \simeq \nu_{d} M$, then $\vec{d}:=\operatorname{dim} M$ is fixed by ν_{d}. We say \vec{d} is Coxeter stable.

The k-points of Riglso ${ }^{S}$

Note ν_{d} induces a (shifted) Coxeter transformation on $K_{0}(A)$.
If $M \in \bmod A$ is Serre stable in sense $M \simeq \nu_{d} M$, then $\vec{d}:=\operatorname{dim} M$ is fixed by ν_{d}. We say \vec{d} is Coxeter stable.

Proposition

Let M be a Serre stable module with $\operatorname{dim} M$ minimal Coxeter stable.

The k-points of Riglso ${ }^{S}$

Note ν_{d} induces a (shifted) Coxeter transformation on $K_{0}(A)$.
If $M \in \bmod A$ is Serre stable in sense $M \simeq \nu_{d} M$, then $\vec{d}:=\operatorname{dim} M$ is fixed by ν_{d}. We say \vec{d} is Coxeter stable.

Proposition

Let M be a Serre stable module with $\operatorname{dim} M$ minimal Coxeter stable. If End $_{A} M$ is semisimple then

The k-points of Riglso ${ }^{S}$

Note ν_{d} induces a (shifted) Coxeter transformation on $K_{0}(A)$.
If $M \in \bmod A$ is Serre stable in sense $M \simeq \nu_{d} M$, then $\vec{d}:=\operatorname{dim} M$ is fixed by ν_{d}. We say \vec{d} is Coxeter stable.

Proposition

Let M be a Serre stable module with $\operatorname{dim} M$ minimal Coxeter stable. If End $_{A} M$ is semisimple then

- Any two isomorphisms $\theta: M \longrightarrow \nu_{d} M, \theta^{\prime}: M \longrightarrow \nu_{d} M$ are isomorphic in Riglso ${ }^{S}$.

The k-points of Riglso ${ }^{S}$

Note ν_{d} induces a (shifted) Coxeter transformation on $K_{0}(A)$.
If $M \in \bmod A$ is Serre stable in sense $M \simeq \nu_{d} M$, then $\vec{d}:=\operatorname{dim} M$ is fixed by ν_{d}. We say \vec{d} is Coxeter stable.

Proposition

Let M be a Serre stable module with $\operatorname{dim} M$ minimal Coxeter stable. If End $_{A} M$ is semisimple then

- Any two isomorphisms $\theta: M \longrightarrow \nu_{d} M, \theta^{\prime}: M \longrightarrow \nu_{d} M$ are isomorphic in Riglso ${ }^{S}$.
- The automorphism group in Riglso $^{s}(k)$ of any such θ is μ_{ρ} where $p=$ no. Wedderburn components of $E^{2} d_{A}$.

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular.

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{W} \mathcal{T}$.

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{\mathbb{W}} \mathcal{T}$.

Then Riglso $(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \&$

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{W} \mathcal{T}$.

Then $\operatorname{Riglso}(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \& \mathcal{T}$ is dual to the universal representation.

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{\mathbb{W}} \mathcal{T}$.

Then $\operatorname{Riglso}(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \& \mathcal{T}$ is dual to the universal representation.
Remark Higher dimensional versions hold.

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{\mathbb{W}} \mathcal{T}$.

Then $\operatorname{Riglso}(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \& \mathcal{T}$ is dual to the universal representation.
Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let $A=$ canonical algebra. Then $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$ is a weighted projective line derived equivalent to A

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{\mathbb{W}} \mathcal{T}$.

Then $\operatorname{Riglso}(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \& \mathcal{T}$ is dual to the universal representation.
Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let $A=$ canonical algebra. Then $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$ is a weighted projective line derived equivalent to A \& the universal representation is dual to the tilting bundle given earlier.

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{\mathbb{W}} \mathcal{T}$.

Then $\operatorname{Riglso}(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \& \mathcal{T}$ is dual to the universal representation.
Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let $A=$ canonical algebra. Then $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$ is a weighted projective line derived equivalent to A \& the universal representation is dual to the tilting bundle given earlier.

- Abdelghadir-Ueda have also exhibited weighted projective lines as moduli spaces,

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{\mathbb{W}} \mathcal{T}$.

Then $\operatorname{Riglso}(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \& \mathcal{T}$ is dual to the universal representation.
Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let $A=$ canonical algebra. Then $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$ is a weighted projective line derived equivalent to A \& the universal representation is dual to the tilting bundle given earlier.

- Abdelghadir-Ueda have also exhibited weighted projective lines as moduli spaces, but of enriched quiver representations.

Some theorems

Theorem (C.-Lerner)

Let \mathbb{W} be a weighted projective line which is Fano or anti-Fano i.e. $\omega_{\mathbb{W}}^{\mp 1}$ is ample or equiv, is not tubular. Let

- $\mathcal{T}=\oplus \mathcal{T}_{v}$ be a basic tilting bundle on \mathbb{W}
- $A=\operatorname{End}_{\mathbb{W}} \mathcal{T}$.

Then $\operatorname{Riglso}(A, \operatorname{dim} \mathcal{T})^{S} \simeq \mathbb{W} \& \mathcal{T}$ is dual to the universal representation.
Remark Higher dimensional versions hold.

Theorem (C.-Lerner)

Let $A=$ canonical algebra. Then $\operatorname{Riglso}(A, \overrightarrow{1})^{S}$ is a weighted projective line derived equivalent to A \& the universal representation is dual to the tilting bundle given earlier.

- Abdelghadir-Ueda have also exhibited weighted projective lines as moduli spaces, but of enriched quiver representations.
- The proof of the derived equivalence is via Bridgeland-King-Reid theory and is independent of Geigle-Lenzing's.

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety.

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Let \mathcal{T} be an $\left(\mathcal{O}_{\mathbb{W}}, A\right)$-bimodule for some fin dim algebra A which is left locally free \&

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Let \mathcal{T} be an $\left(\mathcal{O}_{\mathbb{W}}, A\right)$-bimodule for some fin dim algebra A which is left locally free \&

$$
F=\operatorname{RHom}_{\mathbb{W}}(\mathcal{T},-): D_{c}^{b}(\mathbb{W}) \longrightarrow D_{f g}^{b}(A)
$$

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Let \mathcal{T} be an $\left(\mathcal{O}_{\mathbb{W}}, A\right)$-bimodule for some fin dim algebra A which is left locally free \&

$$
F=\operatorname{RHom}_{\mathbb{W}}(\mathcal{T},-): D_{c}^{b}(\mathbb{W}) \longrightarrow D_{f g}^{b}(A)
$$

Theorem(Bridgeland-King-Reid)

Suppose for all $\mathcal{S}, \mathcal{S}^{\prime} \in \Omega$ we have

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Let \mathcal{T} be an $\left(\mathcal{O}_{\mathbb{W}}, A\right)$-bimodule for some fin dim algebra A which is left locally free \&

$$
F=\operatorname{RHom}_{\mathbb{W}}(\mathcal{T},-): D_{c}^{b}(\mathbb{W}) \longrightarrow D_{f g}^{b}(A)
$$

Theorem(Bridgeland-King-Reid)

Suppose for all $\mathcal{S}, \mathcal{S}^{\prime} \in \Omega$ we have

- $F: \operatorname{Ext}_{\mathbb{W}}^{i}\left(\mathcal{S}, \mathcal{S}^{\prime}\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(F \mathcal{S}, F \mathcal{S}^{\prime}\right)$ is an isomorphism,

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Let \mathcal{T} be an $\left(\mathcal{O}_{\mathbb{W}}, A\right)$-bimodule for some fin dim algebra A which is left locally free \&

$$
F=\operatorname{RHom}_{\mathbb{W}}(\mathcal{T},-): D_{c}^{b}(\mathbb{W}) \longrightarrow D_{f g}^{b}(A)
$$

Theorem(Bridgeland-King-Reid)

Suppose for all $\mathcal{S}, \mathcal{S}^{\prime} \in \Omega$ we have

- $F: \operatorname{Ext}_{\mathbb{W}}^{i}\left(\mathcal{S}, \mathcal{S}^{\prime}\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(F \mathcal{S}, F \mathcal{S}^{\prime}\right)$ is an isomorphism, and
- $\nu(F \mathcal{S}) \simeq F\left(\omega_{\mathbb{W}} \otimes_{\mathbb{W}} \mathcal{S}\right)$.

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Let \mathcal{T} be an $\left(\mathcal{O}_{\mathbb{W}}, A\right)$-bimodule for some fin dim algebra A which is left locally free \&

$$
F=\operatorname{RHom}_{\mathbb{W}}(\mathcal{T},-): D_{c}^{b}(\mathbb{W}) \longrightarrow D_{f g}^{b}(A)
$$

Theorem(Bridgeland-King-Reid)

Suppose for all $\mathcal{S}, \mathcal{S}^{\prime} \in \Omega$ we have

- $F: \operatorname{Ext}_{\mathbb{W}}^{i}\left(\mathcal{S}, \mathcal{S}^{\prime}\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(F \mathcal{S}, F \mathcal{S}^{\prime}\right)$ is an isomorphism, and
- $\nu(F \mathcal{S}) \simeq F\left(\omega_{\mathbb{W}} \otimes_{W} \mathcal{S}\right)$.

Then F is a derived equivalence.

Reminder on Bridgeland-King-Reid theory

Let \mathbb{W} be a smooth weighted projective variety. Then the set Ω of simple sheaves is a spanning class for Coh \mathbb{W}.

Let \mathcal{T} be an $\left(\mathcal{O}_{\mathbb{W}}, A\right)$-bimodule for some fin dim algebra A which is left locally free \&

$$
F=\operatorname{RHom}_{\mathbb{W}}(\mathcal{T},-): D_{c}^{b}(\mathbb{W}) \longrightarrow D_{f g}^{b}(A)
$$

Theorem(Bridgeland-King-Reid)

Suppose for all $\mathcal{S}, \mathcal{S}^{\prime} \in \Omega$ we have

- $F: \operatorname{Ext}_{\mathbb{W}}^{i}\left(\mathcal{S}, \mathcal{S}^{\prime}\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(F \mathcal{S}, F \mathcal{S}^{\prime}\right)$ is an isomorphism, and
- $\nu(F \mathcal{S}) \simeq F\left(\omega_{\mathbb{W}} \otimes_{W} \mathcal{S}\right)$.

Then F is a derived equivalence.
Remark Serre stability condition makes checking the 2nd condition easy.

A fresh look at the canonical algebra A

A fresh look at the canonical algebra A

Step 1 Choose \vec{d} : For Riglso ${ }^{S} \neq \varnothing$ need \vec{d} fixed by Coxeter transformation $=\nu_{1}$ on $K_{0}(A)$.

A fresh look at the canonical algebra A

Step 1 Choose \vec{d} : For Riglso ${ }^{S} \neq \varnothing$ need \vec{d} fixed by Coxeter transformation $=\nu_{1}$ on $K_{0}(A)$. Use $\vec{d}=\overrightarrow{1} \because$ it works and generates all such vectors if A is non-tubular.

A fresh look at the canonical algebra A

Step 1 Choose \vec{d} : For Riglso ${ }^{S} \neq \varnothing$ need \vec{d} fixed by Coxeter transformation $=\nu_{1}$ on $K_{0}(A)$. Use $\vec{d}=\overrightarrow{1} \because$ it works and generates all such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

A fresh look at the canonical algebra A

Step 1 Choose \vec{d} : For Riglso ${ }^{S} \neq \varnothing$ need \vec{d} fixed by Coxeter transformation $=\nu_{1}$ on $K_{0}(A)$. Use $\vec{d}=\overrightarrow{1} \because$ it works and generates all such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

Note iso class determined by product $a b c$

A fresh look at the canonical algebra A

Step 1 Choose \vec{d} : For Riglso ${ }^{S} \neq \varnothing$ need \vec{d} fixed by Coxeter transformation $=\nu_{1}$ on $K_{0}(A)$. Use $\vec{d}=\overrightarrow{1} \because$ it works and generates all such vectors if A is non-tubular.

Step 2 Compute Serre functor on some modules: eg for

Note iso class determined by product $a b c$
Step 3 Guess a universal family/moduli space:

is a μ_{3}-equivariant family on $\mathbb{A}_{\mathrm{x}}^{1}$. See Riglso ${ }^{S} \simeq \mathbb{P}^{1}(3 y)$.

Remark on stable reduction in this case

For $c \in k-0$, we get a Serre stable family

Remark on stable reduction in this case

For $c \in k-0$, we get a Serre stable family

Remark on stable reduction in this case

For $c \in k-0$, we get a Serre stable family

which does not immediately extend to $c=0$.

Remark on stable reduction in this case

For $c \in k-0$, we get a Serre stable family

which does not immediately extend to $c=0$. Need first adjoin $\sqrt[3]{c}$ to get

Extra Comments

Extra Comments

- Method "works" because Serre stable moduli stack of "skyscraper sheaves" is the tautological moduli problem that recovers many stacks.

Extra Comments

- Method "works" because Serre stable moduli stack of "skyscraper sheaves" is the tautological moduli problem that recovers many stacks.
- Ideally we can apply Bridgeland-King-Reid theory to obtain independently many derived equivalences.
- Method "works" because Serre stable moduli stack of "skyscraper sheaves" is the tautological moduli problem that recovers many stacks.
- Ideally we can apply Bridgeland-King-Reid theory to obtain independently many derived equivalences. Problem is we don't have many general results about the Serre stable moduli stack e.g. need a stable reduction theorem.
- Method "works" because Serre stable moduli stack of "skyscraper sheaves" is the tautological moduli problem that recovers many stacks.
- Ideally we can apply Bridgeland-King-Reid theory to obtain independently many derived equivalences. Problem is we don't have many general results about the Serre stable moduli stack e.g. need a stable reduction theorem.
- For tame hereditary algebras, the preprojective algebra arises naturally in attempting to construct Serre stable objects.
- Method "works" because Serre stable moduli stack of "skyscraper sheaves" is the tautological moduli problem that recovers many stacks.
- Ideally we can apply Bridgeland-King-Reid theory to obtain independently many derived equivalences. Problem is we don't have many general results about the Serre stable moduli stack e.g. need a stable reduction theorem.
- For tame hereditary algebras, the preprojective algebra arises naturally in attempting to construct Serre stable objects.
- Case where you insert weights on intersecting divisors fails. Perhaps can be fixed by using the cotangent bundle.

