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1 Overview of the Field
Advances in technology and the ever-growing role of digital sensors and computers in science have led to
an exponential growth in the amount and complexity of data we collect. Uncertainty, scale, non-stationarity,
noise, and heterogeneity are fundamental issues impeding progress at all phases of the pipeline that creates
knowledge from data. This means that the amount of new mathematical challenges arising from the need of
data analysis and information processing is enormous, with their solution requiring fundamentally new ideas
and approaches, with significant consequences in the practical applications.

The analysis of massive, high-dimensional, noisy, time-varying data sets has become a critical issue for a
large number of scientists and engineers. Massive data sets have their own architecture. Each data source has
an inherent structure, which we should attempt to detect in order to utilize it for applications, such as denois-
ing, clustering, anomaly detection, knowledge extraction, recovery, etc. Harmonic analysis revolves around
creating new structures for decomposition, rearrangement and reconstruction of operators and functions—in
other words inventing and exploring new architectures for information and inference. Indeed, in the last three
decades Applied Harmonic Analysis has been at the center of many significant new ideas and methods crucial
in a wide range of signal and image processing applications, and in the analysis and processing of large data
sets. For example, compressive sensing, sparse approximations and models, geometric multiscale analysis
and diffusion geometry represent some quite recent important breakthroughs [4, 8, 6, 21, 1].

In particular the novel paradigm of sparsity and sparse approximations has had a tremendous impact on
various areas in applied mathematics such as imaging sciences. It states that functions and signals which come
from applications typically exhibit the property of admitting a representation in a suitable orthonormal basis
or—more often due to the advantageous property of redundancy—a frame with very few non-zero coefficients
or, in a weakened version, an approximation by such an expansion. Suitable representation systems were and
are still being developed in the areas of applied harmonic analysis such as wavelets or curvelets.

Although compression schemes such as JPEG2000 might be considered the first breakthrough of this
general approach, quite recently, the new area of compressive sensing revealed another applications with
tremendous impact. Roughly speaking, it showed that signals exhibiting a sparse approximation can be
recovered efficiently from what would previously have been considered highly incomplete measurements.
This discovery has led to a canon of fundamentally new approaches for various previously considered almost
insolvable problems, for instance, for signal and image recovery problems. Compressive sensing also paves
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the way for data acquisition schemes that scale with the inherent information dimension instead of with the
ambient dimension, thereby holding promise to mitigate the “Curse of Dimensionality”.

Several new directions have emerged on the heels of compressive sensing: Low-rank matrix recovery
aims at recovering a matrix with small rank from incomplete data. In particular, matrix completion recovers
the matrix from only a small fraction of its entries. Since low-rank structures arise in numerous applications,
one can expect an enormous impact. However, much of the theory so far deals with linear measurements,
while in practice we often also face non-linear measurements, for instance in situations where only signal
intensity can be obtained. Despite recent breakthroughs in the area of phase retrieval, many challenging
mathematical problems problems remain open in these areas.

Graph Laplacians and related nonlinear mappings into low dimensional spaces have been shown to be
powerful tools for organizing high dimensional data. Especially diffusion maps, which have their roots in
harmonic analysis, have been a useful tool in reducing the dimensionality of the data as well as providing
a measure for pattern recognition and feature extraction. They yield meaningful geometric descriptions of
data sets for efficient representation of complex geometric structures. Diffusion wavelets merge the power of
diffusion maps with the advantages of wavelets. They generalize classical wavelets, allowing for multiscale
analysis and signal processing on general structures, such as manifolds, graphs and point clouds in Euclidean
space. This has several applications, for instance in the study of data sets which can be modeled as graphs,
and one is interested in learning functions on such graphs.

Another important development in this area is the Scattering Transform, developed by Stephane Mal-
lat [16], which builds locally invariant, stable and informative signal representations by cascading wavelet
modulus decompositions followed by a lowpass averaging filter. As we will discuss in more detail below, the
scattering transform also establishes an important link between harmonic analysis and deep learning. Deep
learning is making major advances in solving problems that have resisted the best attempts of the artificial
intelligence community for many years. Yet, despite its success, so far we have very little theoretical under-
standing of what makes this approach work (or fail). Scattering transforms provide a promising line of attack
for developing a theoretical framework for deep learning. By introducing the rich collection of tools from
harmonic analysis into deep neural networks in a principled way, we should be able to greatly enhance the
efficiency and performance of deep neural networks.

The aforementioned exciting new developments have not only further strengthened the connections be-
tween applied harmonic analysis, machine learning, and data mining, but they also set the stage for new
disruptive ideas for analyzing and extracting knowledge from massive and complex data sets. The goal of
this workshop was to ignite this new wave of developments. In the last decade we have witnessed significant
advances in many individual core areas of data analysis, including machine learning, signal processing, statis-
tics, optimization, and of course harmonic analysis. It appears highly likely that the next major breakthroughs
will occur at the intersection of these disciplines. Hence, what is needed is a concerted effort to bring together
world leading experts from all these areas, which was one of the aims of this workshop.

This workshop has revolved around the following topics:
(i) Emerging connections between harmonic analysis and deep learning;

(ii) Understanding the structure of high-dimensional data;
(iii) Construction of data-adaptive efficient representations;
(iv) Efficient algorithms for inverse problems on complex data sets.

2 Recent Developments and Open Problems

2.1 Emerging connections between deep learning and harmonic analysis
One of the most exciting developments in machine learning in the past five years is the advent of deep
learning, which is a special form of a neural network [12]. Deep neural networks build hierarchical invariant
representations by applying a succession of linear and non-linear operators which are learned from training
data. Deep neural networks, and in particular convolutional networks developed by LeCun [11, 13], have
recently achieved state-of-the-art results on several complex object recognition tasks. In addition to beating
records in image recognition, and speech recognition, it has beaten other machine-learning techniques at
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Figure 1: A convolutional network (from: Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.
521, no. 7553, pp. 436444, 2015.) The outputs of each layer of a typical convolutional network architecture
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, blue) inputs, bottom right). Each
rectangular image is a feature map corresponding to the output for one of the learned features, detected at
each of the image positions. Information flows bottom up, with lower-level features acting as oriented edge
detectors, and a score is computed for each image class in the output.

predicting the activity of potential drug molecules, analyzing particle accelerator data, reconstructing brain
circuits, and predicting the effects of mutations in non-coding DNA on gene expression and disease.

Convolutional nets are currently among the most successful deep learning architectures in a variety of
tasks, in particular, in computer vision. A typical convolutional net used in computer vision applications
consists of multiple convolutional layers, passing the input image through a set of filters followed by point-
wise nonlinearity. An example architecture of a deep convolutional network is depicted in Figure 1.

A major issue in deep learning is to understand the properties of these networks, what needs to be learned
and what is generic and common to most image classification problems. There are promising signs that this
theoretical framework could be derived with tools from harmonic analysis. A first breakthrough towards
this goal is the scattering transform, which has the structure of a convolutional network. Yet, rather than
being learnt, the scattering network is obtained from the invariance, stability and informative requirements.
A scattering transform builds invariant, stable and informative signal representations for classification. It
is computed by scattering the signal information along multiple paths, with a cascade of wavelet modulus
operators implemented in a deep convolutional network, see Figure 2. It is stable to deformations, which
makes it particularly effective for image, audio and texture discrimination [3].

Scattering transforms provide a promising line of attack for developing a theoretical framework for deep
learning. By introducing the rich collection of tools from harmonic analysis into deep neural networks in a
principled way, we should be able to greatly enhance the efficiency and performance of deep neural networks.

While deep learning models have been particularly successful when dealing with signals such as speech,
images, or video, in which there is an underlying Euclidean structure, recently there has been a growing
interest in trying to apply learning on non-Euclidean geometric data, for example, in computer graphics and
vision, natural language processing, and biology.

As Mallat points out in [17], supervised learning is a high-dimensional interpolation problem. We ap-
proximate a function f(x) from q training samples {xi, f(xi)}qi=1, where x is a data vector of very high
dimension d. In high dimension, x has a considerable number of parameters, which is a manifestation of the
curse of dimensionality. Sampling uniformly a volume of dimension d requires a number of samples which
grows exponentially with d. In most applications, the number q of training samples rather grows linearly
with d. It is possible to approximate f(x) with so few samples, only if f has some strong regularity proper-
ties allowing to ultimately reduce the dimension of the estimation. Any learning algorithm, including deep
convolutional networks, thus relies on an underlying assumption of regularity. Specifying the nature of this
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Figure 2: A scattering transform is computed by scattering the signal information along multiple paths,
with a cascade of wavelet modulus operators implemented in a deep convolutional network. It is stable to
deformations, which makes it particularly effective for image, audio and texture discrimination.

regularity is one of the core mathematical problems.
One can try to circumvent the curse of dimensionality by reducing the variability or the dimension of x,

without sacrificing the ability to approximate f(x). This is done by defining a new variable Ψ(x) where Ψ
is a contractive operator which reduces the range of variations of x, while still separating different values
of f : Ψ(x) 6= Ψ(x0) if f(x) 6= f(x0). This separation-contraction trade-off needs to be adjusted to the
properties of f . Linearization is a strategy used in machine learning to reduce the dimension with a linear
projector. A low-dimensional linear projection of x can separate the values of f if this function remains
constant in the direction of a high-dimensional linear space. This is rarely the case, but one can try to
find Ψ(x) which linearizes high-dimensional domains where f(x) remains constant. The dimension is then
reduced by applying a low-dimensional linear projector on Ψ(x). Finding such a Ψ is the central goal of
kernel learning algorithms.

Theory needs to be developed for Deep Learning to guide the search of proper feature extraction models
at each layer. Until now deep learning acts very much like a black box, since algorithms are often based on
ad hoc rules without theoretical foundation, the learned representations lack intepretability, and we do not
know how to modify deep learning for those cases where it fails. How much training is really needed? And,
perhaps one of the most difficult questions, how can we achieve unsupervised deep learning?

2.2 Understanding the structure of high-dimensional data
The need to analyze massive data sets in Euclidean space has led to a proliferation of research activity,
including methods of dimension reduction and manifold learning. In general, understanding large data means
identifying intrinsic characteristics of the data and developing techniques to isolate them.

While many of the currently existing tools (such as diffusion maps) show great promise, they rely on the
assumption that data are stationary and homogeneous. Yet in many cases, we are dealing with changing and
heterogeneous data. For instance, in medical diagnostics, we may want to infer a common phenomenon from
data as diverse as MRI, EEG, and ECG. How do we properly fuse and process heterogeneous data to extract
knowledge?

In a broad range of natural and real-world dynamical systems, measured signals are controlled by un-
derlying processes or drivers. As a result, these signals exhibit highly redundant representations, while their
temporal evolution can often be compactly described by dynamical processes on a low-dimensional mani-
fold. Recently, diffusion maps have been generalized to the setting of a dynamic data set, in which the graph
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associated with it changes depending on some set of parameters. The associated global diffusion distance
allows measuring the evolution of the dynamic data set in its intrinsic geometry. However, this is just a first
step. One objective of this workshop was dedicated to mathematical tools that can detect and capture in an
automatic, unsupervised manner the inner architecture of large data sets.

2.3 Construction of data-adaptive efficient representations
Processing of signals on graphs is emerging as a fundamental problem in an increasing number of applica-
tions. Indeed, in addition to providing a direct representation of a variety of networks arising in practice,
graphs serve as an overarching abstraction for many other types of data.

The construction of data-adaptive dictionaries is crucial, even more so in light of the need to analyze data
that in past has not fallen within the boundary of signal processing, for example graphs or text documents. In
fact, the above may be considered as casting a bridge between classical signal processing and the new era of
processing of general data.

Convolutional neural networks have been successful in machine learning problems where the coordinates
of the underlying data representation have a grid structure, and the data to be studied in those coordinates
has translational equivariance/invariance with respect to this grid. However, e.g. data defined on 3-D meshes,
such as surface tension or temperature, measurements from a network of meteorological stations, or data
coming from social networks or collaborative filtering, are all examples of datasets on which one cannot apply
standard convolutional networks. Clearly, this is another area where a closer link between deep learning,
signal processing, and harmonic analysis would be highly beneficial.

2.4 Efficient algorithms for inverse problems on complex data sets
Inverse problems arising in connection with massive, complex data sets pose tremendous challenges and
require new mathematical tools. Consider for instance femtosecond X-ray protein nanocrystallography. There
the problem is to uncover the structure of (3-dimensional) proteins from multiple (2-dimensional) intensity
measurements [23]. In addition to the huge amount of data and the fact that phase information gets lost
during the measurement process, we also do not know the proteins’ rotation, which change from illumination
to illumination. Standard phase retrieval methods fail miserably in this case. Yet, recent advances at the
intersection of harmonic analysis, optimization, and signal processing show promise to solve such challenging
problems.

Other important inverse problems in this topic are tied to heterogenous data or to the idea of self-
calibration. Numerous deep questions arise. How can we utilize ideas of sparsity and minimal information
complexity in this context? Is there a unified view of such measures that would include sparsity, lowrankness,
and others (such as low-entropy), as special cases? This may lead to a new theory that considers an abstract
notion of simplicity in general inverse problems. Can we design efficient non-convex algorithms with prov-
able convergence? One objective of this workshop was the advancement of new theoretical and numerical
tools for such demanding inverse problems.

3 Presentation Highlights and Scientific Progress
In this section we discuss a few selected highlights among the many high caliber presentations. One of the
key events of the workshop was the opening talk by Yann LeCun, who is famous for his pioneering work on
Deep Learning and Artificial Intelligence. His presentation was aptly titled “Obstacles to AI, Mathematical
and Otherwise”. According to LeCun, prediction, perception, planning/reasoning, attention, and memory
are the pillars of intelligence. Both animals and humans learn to predict, learn how the world works, and
acquire common sense largely without supervision, through observation and experimentation. This is a far
cry from supervised learning–the basis of most recent successes in the application of deep learning. Signif-
icant progress in AI will require breakthroughs in unsupervised/predictive learning, as well as in reasoning,
attention, and episodic memory. Yann LeCun described several projects at FAIR and NYU on unsupervised
learning for predicting videos using adversarial training, question answering with a new type of memory-
augmented network, and various applications for vision and natural language understanding. In his talk,
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Yann LeCu emphasized those open problems in artificial intelligence that are especially interesting for math-
ematicians. One of the problems is of course the general lack of a theoretical understanding behind why deep
learning works and why it sometimes does not work. Despite the flurry of research activity in Deep Learning
in recent years, almost no progress has been made regarding developing theory for Deep Learning.

Therefore, one focal point of this workshop was to close this gap between theory and practice of deep
learning. Several presentations were devoted to this topic. Stephane Mallat, in his talk, was looking at the
mathematical mysteries of deep networks. He presented an attempt to provide a partial answer to the afore-
mentioned question about developing theory for deep learning [17]. Recall that multilayer neural networks
are computational learning architectures which propagate the input data across a sequence of linear operators
and simple non-linearities. The properties of shallow networks, with one hidden layer, are well understood
as decompositions in families of ridge functions. However, these approaches do not extend to networks with
more layers. Deep convolutional neural networks are implemented with linear convolutions followed by non-
linearities, over typically more than 5 layers. These complex programmable machines, defined by potentially
billions of filter weights, bring us to a different mathematical world. Many researchers have pointed out
that deep convolution networks are computing progressively more powerful invariants as depth increases,
but relations with networks weights and non-linearities are complex. Mallat aimed at clarifying important
principles which govern the properties of such networks, but their architecture and weights may differ with
applications. He showed that computations of invariants involve multiscale contractions, the linearization of
hierarchical symmetries, and sparse separations. This conceptual basis is only a first, albeit a very important,
step towards a full mathematical understanding of convolutional network properties.

Staying with this topic, Alexander Cloninger discussed the approximation of functions using deep neural
nets. Given a function f on a d-dimensional manifold Γ ∈ Rm, he constructed a sparsely-connected depth-4
neural network for which he was able to bound its error in approximating f , see [22]. The size of the network
depends on dimension and curvature of the manifold Γ, the complexity of f , in terms of its wavelet descrip-
tion, and only weakly on the ambient dimension m. Essentially, the network computes wavelet functions,
which are computed from so-called Rectified Linear Units. Hrushikesh Mhaskar analyzed the advantages of
deep versus shallow networks, thereby settling an old conjecture by Bengio on the role of depth in networks.
While the universal approximation property holds both for hierarchical and shallow networks, he proved that
deep (hierarchical) networks can approximate the class of compositional functions with the same accuracy as
shallow networks but with exponentially lower number of training parameters as well as VC-dimension [18].
He then introduced a general class of scalable, shift-invariant algorithms to show a simple and natural set of
requirements that justify deep convolutional networks.

”The Deceptive Nature of Generalization in Machine Learning” was the topic of a lively presentation by
Ben Recht. Preventing overfitting in machine learning is usually accomplished by constraining model size
or adding regularizers to mitigate complexity. In his talk, Recht aimed to problematize these conventional
techniques. He provided empirical evidence of function classes of high or infinite dimension that are able
to achieve state-of-the-art performance on several benchmarks without any obvious forms of regularization.
Such performance is possible even if the fit function exactly interpolates the training data. In response,
borrowing tools from optimization and applied harmonic analysis, Recht attempted to establish a framework
for generalization in machine learning that agrees with these experimental findings. This framework applies
to standard high-dimensional linear models and strives to provide insights into contemporary neural network
architectures.

Eero Simoncelli, in his talk “Cascaded gain control representations”, analyzed a range of questions, in-
cluding how populations of neurons extract and represent visual information and in what ways this is matched
to, or optimized for, our visual environment, how do these representations enable or limit perception and what
new principles may be gleaned from this representations and applied to engineered imaging or vision systems.
He introduced a general framework for end-to-end optimization of the rate-distortion performance of nonlin-
ear transform codes assuming scalar quantization. The framework can be used to optimize any differentiable
pair of analysis and synthesis transforms in combination with any differentiable perceptual metric. As a
concrete application he described an image compression system, consisting of a nonlinear encoding transfor-
mation, a uniform quantizer, and a nonlinear decoding transformation [2]. Like many deep neural network
architectures, the transforms consist of layers of convolutional linear filters and nonlinear activation functions,
but Simoncelli uses a joint nonlinearity that implements a form of local gain control, inspired by those used
to model biological neurons. Using a variant of stochastic gradient descent, he jointly optimizes the system
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for rate-distortion performance over a database of training images, introducing a continuous proxy for the
discontinuous loss function arising from the quantizer. The relaxed optimization problem resembles that of
variational autoencoders, except that it must operate at any point along the ratedistortion curve, whereas the
optimization of generative models aims only to minimize entropy of the data under the model. The presented
examples of compressed images were a striking demonstration of the power of the proposed framework.

While convex optimization has been a hot topic in the last decade, partly fueled by the field of compressive
sensing and its extensions, very recently we have witnessed a strong trend towards developing a theoretical
framework for algorithms for non-convex optimization problems, see e.g. [5]. These methods play a partic-
ularly important role in connection with massive datasets, since they promise improved numerical efficiency
compared to their “convex cousins”. This workshop provided a platform for recent developments in this
important topic.

John Wright, in his talk about “Nonconvex Recovery of Low-Complexity Models”, considered a complete
dictionary recovery problem, in which we are given a data matrix Y , and the goal is to factor it into a product
Y ∼ A0X0, where A0 is a square and invertible matrix and X0 is a sparse matrix of coefficients. This is an
abstraction of the dictionary learning problem, in which we try to learn a concise approximation to a given
dataset. While dictionary learning is widely used in signal processing and machine learning, relatively little
is known about it in theory. Much of the difficulty owes to the fact that standard learning algorithms solve
nonconvex problems, and are difficult to analyze globally. The talk described an efficient algorithm which
provably learns representations in which the matrix X0 has as many as O(n) nonzeros per column, under a
suitable probability model for X0. Previous efficient algorithms either only worked for very sparse instances
or required multiple rounds of SDP relaxation. Wright’s results follow from a reformulation of the dictionary
recovery problem as a nonconvex optimization over a high dimensional sphere. This particular nonconvex
problem has a surprising property: once about n3 data samples have been observed, with high probability
the objective function has no spurious local minima [24]. This geometric phenomenon, in which seemingly
challenging nonconvex problems can be solved globally by efficient iterative methods, also arises in problems
such as tensor decomposition and phase recovery from magnitude measurements. Wright sketched these
connections and illustrated his results with applications in microscopy and computer vision.

Clustering is a central problem in unsupervised machine learning. It consists of partitioning a given finite
sequence of points {xi}Ni=1 in Rm into k subsequences such that some dissimilarity function is minimized.
Usually, this function is chosen ad hoc with an application in mind. A particularly common choice is the
k-means objective. A popular heuristic for solving k-means is Lloyd’s algorithm, also known as the k-means
algorithm. This algorithm alternates between calculating centroids of proto-clusters and reassigning points
according to the nearest centroid. In general, Lloyd’s algorithm (and its variants) may converge to local
minima of the k-means objective. Furthermore, the output of Lloyd’s algorithm does not indicate how far
it is from optimal. Thus, there is an urgent need for rigorous mathematical theory to put k-means and its
variations on a more solid footing. In her talk, Soledad Villar presented some significant recent progress
towards this goal [19]. She introduced a model-free relax-and-round algorithm for k-means clustering based
on a semidefinite relaxation due to Peng and Wei [20]. The algorithm interprets the SDP output as a denoised
version of the original data and then rounds this output to a hard clustering. Her approach provides a generic
method for proving performance guarantees for this algorithm, and allows one to analyze the algorithm in
the context of subgaussian mixture models. Villar also studied the fundamental limits of estimating Gaussian
centers by k-means clustering in order to compare her approximation guarantee to the theoretically optimal
k-means clustering solution.

Blind deconvolution is another important problem, that arises in many applications but still lacks a rig-
orous framework for the analysis of efficient algorithms. More precisely, in blind deconvolution one studies
the question of reconstructing two signals f and g from their convolution y = f ∗ g. This problem, known as
blind deconvolution, pervades many areas of science and technology, including astronomy, medical imaging,
optics, and wireless communications. A key challenge of this intricate non-convex optimization problem
is that it might exhibit many local minima. Shuyang Ling, in his talk “Rapid, Robust, and Reliable Blind
Deconvolution via Nonconvex Optimization” presented an efficient numerical algorithm that is guaranteed to
recover the exact solution, when the number of measurements is (up to log-factors) slightly larger than the
information-theoretical minimum, and under reasonable conditions on f and g. The proposed regularized
gradient descent algorithm converges at a geometric rate and is provably robust in the presence of noise [15].
His algorithm is arguably the first blind deconvolution algorithm that is numerically efficient, robust against
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noise, and comes with rigorous recovery guarantees under certain subspace conditions. Moreover, numeri-
cal experiments do not only provide empirical verification of his theory, but they also demonstrate that our
method yields excellent performance even in situations beyond the theoretical framework.

Various applications involve assigning discrete label values to a collection of objects based on some noisy
data. Due to the discreteand hence nonconvexstructure of the problem, computing the maximum likelihood
estimates becomes intractable at first sight. Yuxin Chen presented recent progress towards efficient compu-
tation of the maximum likelihood estimates by focusing on a concrete joint alignment problemthat is, the
problem of recovering n discrete variables xi ∈ {1, . . . ,m}, 1 ≤ i ≤ n, given noisy observations of their
modulo differences {xi − xj mod m}. He proposed a novel low-complexity procedure, which operates in
a lifted space by representing distinct label values in orthogonal directions, and which attempts to optimize
quadratic functions over hyper cubes. Starting with a first guess computed via a spectral method, the algo-
rithm successively refines the iterates via projected power iterations. Chen proved that the proposed projected
power method converges to the maximum likelihood estimate in a suitable regime [7]. The practicality of the
proposed algorithm was illustrated via numerical experiments for both synthetic and real data.

Fast numerical algorithms are a major concern when dealing with massive data sets. This topic was
addresses in several talks such as the aforementioned presentations on efficient algorithms for non-convex
optimization, as well as in a presentation by Alexandre d’Aspremont. He described a powerful regularized
nonlinear acceleration technique for generic optimization problems. The proposed scheme computes esti-
mates of the optimum from a nonlinear average of the iterates produced by any optimization method. The
weights in this average are computed via a simple linear system, whose solution can be updated online.
This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution
on the fly, while the original optimization method is running. Numerical experiments, detailed on classical
classification problems, demonstrated the efficacy of the proposed framework.

Functional maps and functional map networks for joint data analysis was the topic of the talk by Leonid
Guibas. The construction of networks of maps among shapes in a collection enables a variety of applications
in data-driven geometry processing. A key task in network construction is to make the maps consistent with
each other. This consistency constraint, when properly defined, leads not only to a concise representation
of such networks, but more importantly, it serves as a strong regularizer for correcting and improving noisy
initial maps computed between pairs of shapes in isolation. Up-to-now, however, the consistency constraint
has only been fully formulated for point-based maps or for shape collections that are fully similar. Guibas,
in his talk, introduced a framework for computing consistent functional maps within heterogeneous shape
collections [10]. In such collections not all shapes share the same structuredifferent types of shared struc-
ture may be present within different (but possibly overlapping) sub-collections. Unlike point-based maps,
functional maps can encode similarities at multiple levels of detail (points or parts), and thus are particularly
suitable for coping with such diversity within a shape collection. He showed how to rigorously formulate the
consistency constraint in the functional map setting. The formulation leads to a powerful tool for computing
consistent functional maps, and also for discovering shared structures, such as meaningful shape parts.

One of the challenges in data analysis is to distinguish between different sources of variability manifested
in data. In his presentation, Ronen Talmon considered the case of multiple sensors measuring the same phys-
ical phenomenon, such that the properties of the physical phenomenon are manifested as a hidden common
source of variability (which we would like to extract), while each sensor has its own sensor-specific effects.
He presented a method based on alternating products of diffusion operators, and showed that it extracts the
common source of variability [14]. Moreover, this method extracts the common source of variability in a
multi-sensor experiment as if it were a standard manifold learning algorithm used to analyze a simple single-
sensor experiment, in which the common source of variability is the only source of variability.

Another challenge in data analysis is to robustly model both high-dimensional and massive datasets by
a low-rank subspace. This problem was attacked by Gilad Lerman in his talk. Assume we are given high-
dimensional data (large p, large n regime) sampled from a generalized elliptical distribution (possibly with
heavy tails) and establish effective recovery of the shape of its covariance in that regime. The shape of the
covariance can then be used for robust subspace modeling. Moreover, we may consider a massive data set in
an ad hoc wireless sensor network, where each node has access to only one chunk of the dataset. We further
assume no central processing (e.g. due to physical or security restrictions). Lerman proposed a distributed
solution for robust subspace modeling with a fast convergence rate and recovery guarantees (when there is a
generative model). The main mathematical contribution is the careful solution of a local dual minimization
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problem. He discussed various open problems of both scenarios and their extensions, obstacles in unifying
them and obstacles in obtaining numerically efficient and theoretically guaranteed algorithms in very high
dimensions.

Feature selection from real-world data with nonlinear observations was the focus of a presentation by
Gitta Kutyniok [9]. Assume we need to select features n based on a relatively small collection of sample pairs
(xi, yi)i=1,...,m. The observations yi ∈ R are supposed to follow a noisy single-index model, depending on
a certain set of signal variables. A major difficulty is that these variables usually cannot be observed directly,
but rather arise as hidden factors in the actual data vectors xi ∈ Rd (feature variables). Kutyniok showed
that a successful variable selection is still possible in this setup, even when the applied estimator does not
have any knowledge of the underlying model parameters and only takes the raw samples (xi, yi) as input.
The model assumptions were fairly general, allowing for non-linear observations, arbitrary convex signal
structures as well as strictly convex loss functions. This is particularly appealing for practical purposes, since
in many applications, already standard methods, e.g., the Lasso or logistic regression, yield surprisingly good
outcomes. The versatility of this framework was impressively demonstrated by means of a specific real-world
problem, namely sparse feature extraction from (proteomics-based) mass spectrometry data.

4 Outcome of the meeting
Based on the quality of presentations, the intense scientific collaborations, and the enthusiastic feedback
from the participants, this workshop was hugely successful in bringing together world leading experts at
the intersection of applied harmonic analysis, large data sets, machine learning, and signal processing to
present recent developments, in fostering new cooperations, and in making significant progress, or at least
paving the way, towards solving some of the problems described in the previous sections. At the same time,
the passionate discussions and focused interactions during this workshop have perhaps produced as many
questions as they produced answers. On the other hand, articulating meaningful and precise questions is
often the most important step towards scientific breakthroughs.
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[17] Stéphane Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A,
374(2065):2015.0203, 2016.

[18] Hrushikesh N Mhaskar and Tomaso Poggio. Deep vs. shallow networks: An approximation theory
perspective. Analysis and Applications, 14(06):829–848, 2016.

[19] Dustin G Mixon, Soledad Villar, and Rachel Ward. Clustering subgaussian mixtures by semidefinite
programming. arXiv preprint arXiv:1602.06612, 2016.

[20] Jiming Peng and Yu Wei. Approximating k-means-type clustering via semidefinite programming. SIAM
Journal on Optimization, 18(1):186–205, 2007.

[21] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum rank solutions of matrix equations via nuclear
norm minimization. SIAM Review, 52: 471–501, 2010.

[22] Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation properties for deep
neural networks. Applied and Computational Harmonic Analysis, 2016.

[23] Amit Singer, Zhizhen Zhao, Yoel Shkolnisky, and Ronny Hadani. Viewing angle classification of cryo-
electron microscopy images using eigenvectors. SIAM Journal on Imaging Sciences, 4(2):723–759, 2011.

[24] J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere I: Overview and geometric
picture. preprint, http://arxiv.org/abs/1504.06785, 2015.


