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1 Overview of the Field
The physicists Bak, Tang, and Wiesenfeld [5] created an idealized version of a sandpile in which sand is
stacked on the vertices of a graph and is subjected to certain avalanching rules. They used the model as
an example of what they called self-organized criticality. The abelian sandpile model is a variation, due
to the physicist Deepak Dhar in 1990 [24], in which the avalanching obeys a useful commutativity rule.
He realized that the model provided an expression of the dynamics inherent in the discrete Laplacian of
a graph.

The long-term behavior of the abelian sandpile model on a graph is encoded by the critical config-
urations. These critical configurations have connections to parking functions [45], to the Tutte poly-
nomial [46], and to the lattices of integral flows and cuts of a graph [53]. Among other properties, the
critical configurations of the sandpile model have the structure of a group, and this group is our main
object of study. It has been discovered in several different contexts and received many names: the sand-
pile group for graphs [24] and digraphs [49], the critical group [8], the group of bicycles [7], the group
of components [51], and the jacobian of the graph [54].

The abelian sandpile model and its close relative the chip-firing game [44] have become a cross-
roads of a wide range of mathematics, physics, and computer science. Of particular interest in this
workshop were connections with: commutative algebra, algebraic and tropical geometry, pattern for-
mation, models of computation, generalizations of chip-firing, matroid theory, graph orientations, and
tree-bijections, and random graphs.
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2 Recent Developments and Presentation Highlights
Commutative algebra. To each graph, one may associate various ideals encoding chip-firing. At this
workshop, Sam Hopkins presented joint work-in-progress with Spencer Backman [40] on various power
ideals which have relations to areas as disparate as Schubert Calculus and approximation theory. Many
open problems related to these ideals are presented in the Open Problems section, below.

Carlos Valencia and Carlos Alfaro presented recent work on critical ideals, [20]. These are deter-
minantal ideals of a generalized Laplacian matrix for a graph.

The toppling ideal of a graph is the lattice ideal associated to the Laplacian matrix of a graph.
Considerable work has gone into the study of the free resolution of this ideal, e.g., [63], [59]. Anton
Dochtermann and Raman Sanyal have shown that the free resolution of the corresponding monomial
ideal is supported on the graphical hyperplane arrangement. At this workshop, Dochtermann presented
his joint work-in-progress with Sanyal generalizing this result to tropical hyperplane arrangements.

Tropical geometry and pattern formation. One of the themes of our subject is to think of a graph as
a discrete version of a Riemann surface. In between graphs and Riemann surfaces lies a slightly less
discrete version of a graph called a metric graph. These are graphs for which each edge has an assigned
length. Metric graphs serve as models of tropical curves. During the workshop, Melody Chan presented
an introduction to tropical geometry for sandpile theorists. Her talk was followed by those of Nikita
Kalinin and Mikhail Shkolnikov in which they presented extraordinary new results accounting for the
appearance of tropical curves in the scaling limits of sandpile configurations, [41].

Models of computation. It has been known for some time that the sandpile model can mimic a Turing
machine, [35]. A generalization of the sandpile model called an abelian network ([10], [25]) is a system
of communicating finite automata satisfying a certain local commutativity condition, and sandpiles are
examples of such networks. Computationally, abelian networks model algorithms on graphs that can
be implemented in a completely asynchronous distributed manner. The current ubiquity of data sets
on large graphs (arising from biological networks, the brain, and the internet) has produced a growing
demand for such algorithms. At this workship Lionel Levine presented his work on abelian networks,
highlighting three open questions:

1. Energy: Following Mohammadi and Shokrieh (2014) and Guzman and Klivans (2015), define a
notion of superstable for abelian networks. What energy do superstable configurations minimize?

2. Taxonomy: Given a list of gates, what is the class of functions computable by an abelian network
built out of those gates?

3. Coefficients: How does the computational power of an abelian network with coefficients in a
monoid C vary with C?

Swee Hong Chan presented attempts to extend to abelian networks Merino’s theorem relating the Tutte
polynomial of a graph to the generating function for its critical configurations.

M -matrices. The columns of the discrete Laplacian matrix of a graph encode the chip-firing rules for
the sandpile model. A. Gabrielov has shown that if one substitutes an arbitraryM -matrix for the discrete
Laplacian and uses its columns to define chip-firing rules, it is still the case that every configuration
stabilizes. In Caroline Klivans’ workshop talk, she showed how many aspects of graphical chip-firing
(criticality, energy minimization and superstability) extend to the M -matrix setting. Vic Reiner then
presented joint with Klivans, applying this more general theory to chip-firing on Dynkin diagrams and
McKay quivers. Hugo Corrales discussed the relation between M -matrices and arithmetical graphs.
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Matroid theory and partial orientations. One way of describing the critical group of a graph is as
the quotient of the integral edge group of the graph by the sum of graph’s integral cycle and cut spaces.
Hence, some of the matroidal structure of a graph is encoded in its critical group. C. Merino exploited
this fact in his proof of Stanley’s h-vector conjecture for cographical matroids, [47].

In our workshop, Farbod Shokrieh gave an overview of matroid theory and discussed how to extend
some of the notions of chip-firing to the class of regular matroids. For instance, one can define Jacobian
groups whose cardinality/volume is related to the ”complexity” of the matroid.

Spencer Backman showed how partial orientations of the edges of a graph are related to graphical
Riemann-Roch theory.

Tree bijections. The critical group of a graph may be viewed as the integral cokernel of the graph’s
discrete Laplacian operator. Hence, via the matrix-tree theorem, the cardinality of the critical group
is the number of spanning trees of the graph. Much work has been done on combinatorial bijections
between critical configurations and spanning trees. At this workshop, Chi Ho Yuen presented the state
of the art for extensions to the case of tropical curves.

3 Ongoing projects stemming from the workshop
There are several ongoing collaborations facilitated or initiated at the workshop.

• Some of the foundational problems in our subject were introduced by Lorenzini, [51], who was
concerned with arithmetical structures on graphs coming from the study of degenerating algebraic
curves in algebraic geometry. A group of about 12 people at the workshop became interested in
work involving the combinatorics of arithmetical structures on graphs. These include researchers
from both the US and Mexico, and most of these are new collaborators. They already have partial
results, and are continuing to work on a combined project.

Specifically, they are studying exact enumeration of the arithmetical graphs for fixed graphs or
families of graphs, e.g., paths, cycles, trees of bounded degree, etc. In addition, they are studying
refined enumeration based on statistics on those arithmetical structures. For example, there are
Catalan many arithmetical structures on cycle graphs, and when you refine by the number of
1’s that appear in a fixed arithmetical structure (the “r-vector”) one sees that this corresponds to
partitioning the arithmetical structures into groups with sizes given by Ballot Numbers. Further,
they are studying sandpile groups, and have proven a relationship between the size of the cyclic
sandpile group for a given arithmetical structure and the number of 1’s in the associated r-vector
for that arithmetical structure.

H. Corrales and C. E. Valencia are preparing three manuscripts on arithmetical graphs, [21], [22],
[22], and are collaborating with the above group on further work.

For more information, contact Benjamin Braun.

• Georgia Benkart, Carly Klivans, and Vic Reiner have just posted ”Chip-firing on Dynkin diagrams
and McKay quivers” to the arXiv. Conversations they had with Sam Payne at the conference led
to one of the propositions in this paper.

• Avi Levy connected with Lionel Levine and Swee Hong Chan at the workshop and have developed
a collaboration on the subject of abelian networks.

• Lionel Levine posed a problem during the workshop, about the probability that a random directed
graph is coEulerian. Sam Payne has taken up that problem with his student Shaked Koplewitz.
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It seems to be an interesting new direction to explore, and it is likely to end up being part of
Koplewitz’s PhD thesis.

• Laura Florescu, Lionel Levine, and Wilfried Huss developed a collaboration concerning phase
transitions in the cover time of rotor walks on random graphs which they hope will lead to a paper
in the future.

• Laura Florescu has had conversations with Jeremy Martin and Art Duval about some high-
dimensional generalizations for the sandpile process which she spoke about in her workshop
talk.

• David Perkinson has a student whose undergraduate thesis is motivated by Caroline Klivan’s talk
at the workshop.

4 Open problems
Each day at the workshop, time was alloted for posing open problems. We include here a list of these
problems. (This compilation is due to Sam Hopkins.)

First, we briefly review the basic setup in the simplest case of an undirected, simple graph G =
(V,E), essentially following the presentation in [57]. From now on “graph” will mean “undirected,
simple graph” unless it comes with other adjectives. We will always assume that G is connected.1 A
divisor of G is an element of ZV , i.e., a formal linear combination of the vertices of G. The degree
deg(D) of a divisor D is the sum of its coefficients. Two divisors are linearly equivalent if their
difference belongs to the image of the graph Laplacian ∆ of G. Note that linear equivalence preserves
degree. The Picard group Pic(G) is the group of divisors modulo linear equivalence. It is graded by
degree: Pic(G) :=

⊕
d∈Z Picd(G). Of special note are the parts Picg(G), where g := #E−#V +1 is

the cyclomatic number (i.e., first Betti number, and also sometimes called “genus”) of G, and Pic0(G).
The group of divisors of degree zero modulo linear equivalence, Pic0(G), is also called the Jacobian
of the graph, denoted Jac(G). The Jacobian is also often called the sandpile group of G. (Yet another
name for the sandpile group is the critical group of the graph; but we will never use this term from
now on.) The sandpile group is isomorphic to coker(∆̃), the cokernel of the reduced Laplacian of G,
and so has order equal to det(∆̃), which by Kirchoff’s Matrix-Tree Theorem is equal to the number of
spanning trees of G.

There are various ways to choose representatives for coker(∆̃). Most of these involve fixing the
choice of a sink vertex q ∈ V and can be described via chip-firing on the graph. Let V q := V \
{q} denote the nonsink vertices of G. A configuration on G (w.r.t. q) is an element of NV q , i.e., an
assignment of a nonnegative number of chips to the nonsink vertices of G. If c =

∑
v∈V q cvv is a

configuration, then v ∈ V q is unstable if cv ≥ deg(v). When v is unstable, we can “topple” or “fire”
v by having v send one chip to each of its neighbors (including potentially q.) We ignore all chips that
accumulate at q. By repeatedly toppling unstable vertices in c, we arrive at a stable configuration c̃,
i.e., a configuration where no vertices are unstable. The “confluence” property of the Abelian sandpile
model says that the map c 7→ c̃ is well-defined: it does not matter the order in which we stabilize the
vertices; we always arrive at the same stable configuration. One choice of representatives for coker(∆̃),
coming from the study of the longterm dynamics of chip-firing, are the recurrent configurations: these
are the stable configurations which arise infinitely often in the dynamical process where we randomly

1For generalizations of sandpile groups and chip-firing to other settings, “connected” can mean different things: for chip-firing
on directed graphs, we should assume that the graph is strongly connected; for chip-firing on matrices, we may want to assume
the matrix is irreducible; et cetera.
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add chips to the nonsink vertices and stabilize. Specifically, c is recurrent if for every configuration
a there is some configuration b such that ã+ b = c. The set of recurrent configruations, with the
binary operation of vertex-wise addition and stabilizaiton, is isomorphic to Jac(G). Another choice of
representatives is defined in terms of set-toppling. In a configuration c, a set U ⊆ V q can topple if
every vertex v ∈ U can simultaneously send one chip to each of its neighbors, and no one ends up with
a negative number of chips. We say c is superstable if no nonempty set U ⊆ V q can topple. The set
of superstable configurations, with the binary operation of vertex-wise addition and superstabilizaiton,
is isomorphic to Jac(G). The superstables are essentially the same as the q-reduced divisors. And,
at least in this case where G is undirected, they are the same as the G-parking functions. There is
a straightforward (non-algebraic!) bijection between the recurrents and superstables: c 7→ cmax − c,
where cmax :=

∑
v∈V q (deg(v)− 1)v is the maximal stable configuration.

Let us also briefly describe the important notion, introduced by Baker and Norine [6], of the rank of
a divisor. We say a divisor is effective if all of its coefficients are nonnegative. The rank r(D) of divisor
is some number in {−1, 0, 1, . . .} and r(D) = −1 if and only if there is no effective divisor D′ linearly
equivalent to D. In general r(D) is negative one plus the number of chips an adversary needs to remove
from D so that it is not equivalent to any effective divisor. The rank of a graph divisor is supposed to be
analogous to the algebro-geometric concept of the rank of a divisor on a curve. In particular, an analog
of the Riemann-Roch theorem [6, Theorem 1.12] holds:

r(D)− r(K −D) = deg(D) + 1− g.

Here K :=
∑

v∈V (deg(v)− 2)v is the canonical divisor of G.

4.1 The problems
4.1.1 David Perkinson: “Total Weierstrass weight of graphs”

G is a graph and v ∈ V is some vertex. Choose a divisor class [D] ∈ Pic2g−1(G). Consider the
sequence ai of integers ai := r(D − iV ):

· · · a−2 a−1 a0 a1 a2 · · ·
· · · r(D + 2v) r(D + v) r(D) r(D − v) r(D − 2v) · · ·

and the sequence bi of integers bi := g − 1− i if i < g and bi := −1 if i ≥ g:

· · · b−2 b−1 b0 b1 b2 · · · bg+2 bg+3 · · ·
· · · g + 1 g g − 1 g − 2 g − 3 · · · −1 −1 · · ·

Set wi := ai − bi:

· · · w−2 w−1 w0 w1 w2 · · · w2g w2g+1 · · ·
· · · 0 0 0 ??? ??? · · · 0 0 · · ·

Note that wi is zero for |i| � 0 thanks to the Riemann-Roch theorem. So we can define weightv(D) :=∑
i∈Z wi. And we can also define t(v) :=

∑
[D]∈Pic2g−1(G) weightv(D), the total Weierstrass weight

of v. Note that t(v) is independent of the choice of v; so it makes sense to define t(G) := t(v) for any
v ∈ V to be the total Weierstrass weight of the graph G.

The problem is to explore t(G) for various graphs G. How does it depend on G? A specific
conjecture of Dave and his students is that for G = Kn the complete graph,

t(G) = nn−3 ·
(
n+ 1

4

)
.
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4.1.2 Farbod Shokrieh: “Generic submodularity of rank for graphs”

G is a graph or metric graph. Take D a divisor of G and P , Q points on G. Is it true that

r(D + P ) + r(D +Q) ≤ r(D) + r(D + P +Q),

if D, P , and Q are “generic”? Farbod has counterexamples if they are not generic. Certainly by the
Riemann-Roch theorem the above inequality becomes an equality for D of sufficiently high degree. So
the notion of “generic” is left open in this question. A related question is whether the Baker-Norine
rank r(D) is the rank of a matroid M(D) in some natural way.

The motivation for this question is that many 19th century results about divisors of algebraic curves
can be proved using only the submodularity of the rank function.

4.1.3 Chi Ho Yuen: “Admissible data for family of bijections from spanning trees to Picg(G)”

G is a graph. Fix a choice of orientation for every simple cycle (= matroid circuit) of G. Use this data
to define a map

{spanning trees of G} → Picg(G)

T 7→
class of divisor D having one chip at head of each edge e /∈ T
where e is oriented in agreement with the way the unique cycle
of T ∪ {e} is oriented in our data

For example, if G is the following planar graph

and we take our data to always orient simple cycles counterclockwise, then an example application of
this map is

T

7→
2 00

1 00

The question is if one can give concise necessary and sufficient conditions on the choice of data to make
this map a bijection.

Chi Ho [65] has a nontrivial sufficient condition for the map to be bijective: namely, that n1C1 +
· · ·+ ntCt = 0 has no nonnegative non-zero solution where Ci’s are the oriented cycles in our data set
viewed as a formal sum of oriented edges. That is, one you pick a cycle with the chosen orientation of
the data, you cannot add more cycles to get back to zero. Farbod Shokrieh conjectured that Chi Ho’s
condition is also necessary for the map to bijective for all graphs G.

4.1.4 Sam Hopkins: “Choices in Dhar’s burning algorithm”

Dhar’s burning algorithm [24] [25] can be defined to give a bijection

{q-reduced divisors} → {spanning trees}
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For example, see the bijections of Cori-Le Borgne [18] and Perkinson-Yang-Yu [58]. The specific
bijection depends on a choice of “tiebreak” rule for the burning procedure. Can one classify all tiebreak
rules? Each rule relates the degree of parking functions to some statistic of tree. For example, in the
Cori-Le Borgne bijection the tree statistic is external activity and in the Perkinson-Yang-Yu bijection
the tree statistic is Gessel’s κ-inversion number [31].

4.1.5 Spencer Backman: “Superstables-spanning trees burning bijection for directed graphs”

G is a digraph and q ∈ V is a choice of sink. Can we find a “burning-style” bijective proof that

#

 superstables of G with
respect to q

 = #

 q-rooted spanning trees of
G

 = det(∆q).

Note that such a bijection between spanning trees and G-parking functions is known (see [15]). For
general digraphs, G-parking functions and superstables are not the same thing. They are the same when
G is Eulerian. So this question is open only in the case where G is not Eulerian.

4.1.6 Lionel Levine: “Sandpile circuits”

This is a question about the computational power of a certain class of abelian networks [10] [11] [12]
allowing only a small number of kinds of processors, as in [38]. Fix a digraph G with arcs divided into
three classes: input edges (of which there are k), output edges (of which there are l), and interior edges.
The nodes of G are “abelian processors” of the following four kinds: sandpile, min, max, and product.
An example of this network is

x1 x2 x3

min

sandpile

y1 y2

Here k = 3 and l = 2. The circuit takes an input ~x = (x1, . . . , xk) ∈ Nk and computes an output
~y = (y1, . . . , yl) ∈ Nl. (When G is a directed acyclic graph then it is clear that there always is a well-
defined output. When G has cycles it may run forever; but sometimes even when G has cycles it halts
on all inputs and thus computes a function. A condition for halting on all inputs is given in [11].) For
example, the above example computes the function

(x1, x2, x3) 7→
(

floor

(
min(x1, x2) + x3

2

)
,floor

(
min(x1, x2) + x3

2

))
.

The question is, choosing either “directed” or “directed acyclic”, together with some subset S ⊆
{min,max,product}, and always allowing sandpile nodes, what class of functions can we compute
with networks of this form? As an example, when S = ∅ (that is, allowing only sandpile nodes)
the function can be expressed as a sum of a linear and a periodic function. Moreover, any function
F (~x) = P (~x) + L(~x) with P (~x) ∈ Ql periodic and L(~x) ∈ Ql linear can be computed by these
sandpile networks so long as P (~x) + L(~x) ∈ Nl and P (~x) and L(~x) are coordinatewise increasing.
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Note that there is no distinction between directed or directed acyclic for this case of S = ∅. When we
allow min or max, we can now get functions which are just piecewise linear. Similarly, if we through in
product we get functions that are polynomials. But the problem is to classify exactly which functions
can be computed.

4.1.7 Lilla Tóthmérész: “Complexity of halting problem for sandpiles on Eulerian multidi-
graphs”

G is now a digraph. Let c ∈ NV be a chip configuration on G. The general question is: what is the
complexity of deciding whether the chip-firing stabilization process with halt? A theorem of Björner
and Lovasz [9] says that halting is polynomial time decidable for simple (i.e. no multiple edges directed
the same way) Eulerian digraphs G. On the other hand, a theorem of Farrell and Levine [28] shows that
the halting problem for chip-firing is NP-complete for general digraphs.

For Eulerian digraphs (with possibly multiple edges) the halting problem is in NP and co-NP.
Lilla conjectures that it is actually in P in this case. In fact, we have a 2× 2 chart of digraph properties
for which the chip-firing halting problem is only understood for the upper-left and lower-right squares:

Eulerian General
Simple P ???

Multiple
edges ??? NP-complete

It would be interesting to fill in all the squares of this chart.

4.1.8 Dustin Cartwright and Farbod Shokrieh: “Realizing sandpile groups”

Can every finite abelian group A be Jac(G) for some 2-connected graph G? Note that it is easy to
achieve if we do not requireG to be 2-connected: ifA '

⊕n
i=1 Z/aiZ just letG be a wedge of n cycles

of sizes a1, a2, . . . , an. Here we need to allow multiple edges (i.e., 2-cycles) to achieve summands of
Z/2Z.

Can every pair (A, 〈, 〉) whereA is a finite abelian group and 〈, 〉 is a Q/Z-valued bilinear form on Γ
be realized as Jac(G) together with its canonical pairing for some 2-connected graphG? Gaudet et al. [30]
show that, conditional on the Generalized Riemann Hypothesis, every (A, 〈, 〉) arises in this way, but
again without the requirement that G be 2-connected.

4.1.9 Vic Reiner: “Isomorphism between a group and the Jacobian of its Cayley graph”

Let A be a finite abelian group, and S = {a1, . . . , as} a multiset of nonzero elements of A satisfying∑s
i=1 ai = 0. (This condition roughly corresponds to the ai defining a mapping into SLn(C).) Let G

be the Cayley digraph of (A,S). Then a fact is that there exists a surjection Jac(G) � A.
Do we have Jac(G) ' A if and only if A = Z/mZ for some m and S = {a,−a} for some

generator a of A? One direction is known: if A and S are of this form, then certainly Jac(G) ' A.

4.1.10 Sam Hopkins: “Monomizations of power ideals”

A detailed write-up of this problem is available at [40]. Here is a brief summary. G is a graph, and
q ∈ V a choice of sink. Let R := k[xv : v ∈ V q] be a polynomial ring with generators indexed by
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nonsink vertices. For r ≥ 1, define the power ideal

Jr :=

〈(∑
u∈U

xu

)deg(U)+r

: ∅ 6= U ⊆ V q

〉

where degU (u) := #{e = {u, v} : v ∈ V − U} and deg(U) :=
∑

u∈U degU (u). The Macaulay
inverse systems to the ideals J−1, J0 and J+1 are the internal, central, and external zonotopal algebras
associated to G. It follows from Ardila-Postnikov [1] and Holtz-Ron [39] that

Hilb(R/J+1; y) = yg · TG
(

1 + y,
1

y

)
;

Hilb(R/J0; y) = yg · TG
(

1,
1

y

)
;

Hilb(R/J−1; y) = yg · TG
(

0,
1

y

)
,

where TG(x, y) is the Tutte polynomial of G. We say a monomial ideal I of R is a monomization of
any ideal J of R if the standard monomials of I are a linear basis of the quotient R/J . Let < be any
order on V q and define monomial ideals

I0 :=

〈∏
u∈U

xdegU (u)
u : ∅ 6= U ⊆ V q

〉
;

I+1 :=

〈
xmin<(U) ·

∏
u∈U

xdegU (u)
u : ∅ 6= U ⊆ V q

〉
.

Observe that the standard monomials of I0 are precisely the G-parking functions. Postnikov and
Shapiro [60] showed that I0 is a monomization of J0. Desjardins [19] in his PhD thesis showed that I+1

is a monomization of J+1. (Note that the I are not initial ideals of the J with respect to any term order
and these results do not appeal to Gröbner basis theory.) Can we find an analogous monomization I−1

of the internal power ideal J−1 for all graphs G? Sam suggested an approach via partial graph orien-
tations, which goes back to Gessel-Sagan [32], but which also uses a new class of partial orientations
(“acyclic, cut internal”) defined recently by Backman-Hopkins [4].

4.1.11 Art Duval and Caroline Klivans: “Chip-firing on invertible integer matrices”

Guzmán-Klivans [36] have defined a notion of chip-firing for M -matrices, and more recently a notion
of chip-firing for general invertible integer matrices L [37]. Concepts such as recurrent and superstable
configurations carry over to this setting. The idea is that given an invertible integer matrix L, we pair L
with some M -matrix M . Then we define N := LM−1 and S+ := {Nx : Nx ∈ Zn, x ∈ Rn

≥0}. Then
we chip-fire using the dynamics ofM , but treating S+ as our set of “nonnegative configurations.” There
are still many interesting open problems for this invertible integral matrix chip-firing. It is interesting
even to consider the special case, closely related to work of Duval-Klivans-Martin [27], where L =
AAT and A is a boundary map of some simplicial complex. Here are some specific questions:

(a) Given some L, what is a “good” M -matrix M to pair it with? What is the “closest” M -matrix to a
given L? Is the space of M -matrices nice enough (e.g., convex) to have a projection?
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(b) Find an M -matrix to pair with L so that we have a nice notion of grading in S+; e.g., we could ask
for a version of Merino’s theorem [48] [47] using the Tutte polynomial of the matroid of A.

(c) Does there exist a natural toppling ideal (see [57, §4]) in this general setting?

4.2 David Perkinson: “Burning algorithm for M -matrices”
Is there a burning (or script in the sense of Speer [61]) algorithm forM -matrices? Bond-Levine [12, §5]
have such an algorithm for abelian networks. The Laplacians of abelian networks that halt on all inputs
are indeed M -matrices (see [11, Corollary 6.4]).

4.3 Luis Garcia Puente: “Bijection between recurrents for an M -matrix and its
transpose”

Of course coker(M) = coker(MT ) for M an M -matrix. The recurrent elements are certain repre-
sentatives for coker(M). In the appendix of [60], Postnikov-Shapiro put forward the following natural
question: can we find a bijection between the recurrents of M and of MT ? Note that this question is
closely related to the question Spencer Backman asked above about a bijection between superstables
and spanning trees for directed graphs because the superstables of M are the parking functions of MT

and vice-versa; and as mentioned, there is a spanning tree-parking function bijection for directed graphs
due to Chebikin-Pylyavskyy [15].

4.4 Shaked Koplewitz: “Cohen-Lenstra heuristics for Jacobians of random reg-
ular graphs”

Building on work of Clancy et al. [16], Wood [64] has recently determined the distribution of Jac(G(n, p))
as n → ∞, where G(n, p) is the Erdős-Rényi random graph. The distribution is closely related to the
“Cohen-Lenstra heuristics” [17] that (conjecturally) govern the distribution of random class groups. Are
there similar Cohen-Lenstra heuristics for the Jacobians of random regular graphs? Here our model can
be Gn,d, the random d-regular graph on n vertices. Work of Van Vu and collaborators [43] [42] shows
that it is not so unreasonable to expect random regular graphs to behave similarly to random graphs in
many respects.

4.5 Nikita Kalinin: “Degree of tropical curves appearing in limits of sandpile
stabilizations on a two-dimensional grid”

Consider the sandpile dynamics on an n×n two-dimensional grid (so every vertex has 4 neighbors and
the sink is the “boundary” of this grid). If we start with the maximal stable configuration that assigns 3
chips to every vertex, and then add some finite number d more chips to various sites, and then stabilize,
most of the vertices will return to having a value of 3. Physicists [13] [14] [55] observed experimentally
that as we send n to infinity and rescale properly, the points that do not have a value of 3 form an
interesting one-dimensional (in fact, piece-wise linear) set. Very recently, Kalinin-Shkolnikov [41]
established rigorously that indeed in the limit the points which have a value different from 3 form a
tropical curve (at least away from the boundary of the domain). But what is the degree of this tropical
curve? Nikita conjectured that it should have degree c

√
d for some absolute constant c asymptotically

almost surely if the d extra chips are generically distributed. Note that some special assignments of d
extra chips can produce curves of much higher degree.
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4.6 Sam Hopkins: “Symmetric chip-firing and harmonic dihedral actions on
graphs”

Dave Perkinson in his demonstration of the Sage sandpile package also sketched a kind of symmetric
chip-firing dynamics: we start with a graph G that has some symmetry; we consider symmetric con-
figurations of chips on this graph; when we topple a vertex we topple all vertices in its orbit under
the automorphism group of the graph and so the configuration remains symmetric. On the other hand,
Darren Glass [34] [33] has investigated the sandpile groups of graphs that come with the action of a
dihedral group; in particular establishing a relationship between the sandpile group of the graph and
the sandpile group of the quotient by this dihedral action. There are obvious differences between these
approaches: on one hand, in Dave’s setup the dynamics of symmetric chip-firing may not correspond
to the Laplacian of any graph (they at least correspond to an M -matrix, however); on the other hand,
in Darren’s setup the dihedral group has to act harmonically on the graph. Still, could there be some
relationship between these two versions of sandpile groups with symmetries?

4.7 Dustin Cartwright: “Harmonic dihedral actions on tropical curves”
Does the work of Glass [34] [33] on the Jacobians of graphs admitting a harmonic action of a dihedral
group extend to tropical curves (i.e., metric graphs)?

4.8 Avi Levy and Farbod Shokrieh: “Alternate description of electrical network
cohomology’

Avi Levy in his talk described a graph cohomology theory defined by students at the University of
Washington REU studying inverse problems for electrical networks. Briefly, the story goes as follows.
G is a graph, and ∂G ⊆ V is a set of boundary vertices. We call Γ = (G, ∂G) an electrical network.
(Levy also allows edge-weights, but we will ignore this here.) A function ϕ : V → M is Γ-harmonic
if it is harmonic (i.e.

∑
u∼v ϕ(u) = 0) at all vertices v not in the boundary ∂G. Fix R a commutative

ring. Define a functor U(Γ,−) : R−mod→ R−mod by

U(Γ,M) := {M -valued Γ-harmonic functions}.

Then U(Γ,−) is left-exact and has a right derived functor. So set U i(Γ,−) := RiU(Γ,−). U i(Γ,M)
is the ith (electrical network) cohomology module of Γ with coefficients in M .

A theorem of Levy is that U1(Γ,Z) = Jac(G) when Γ is the network obtained from G by taking
a single vertex q (the sink) to be the boundary ∂G. It is thus interesting to consider U1(Γ, R) for R
an arbitrary commutative ring in this case where Γ has a single boundary vertex. Farbod suggested an
alternate description of U1(Γ, R). Namely, let L be theR-module generated by cycles ofG. And define

L# := {~x ∈ L⊗K : K = fraction field of R, ~x · v ∈ R for all v ∈ L}.

Is it then the case that L#/L ' U1(Γ, R)? Farbod also suggested that this construction is very similar
to the flow graph cohomology of Wagner [62].

4.9 Avi Levy: “Electrical network cohomology with coefficients in a polynomial
ring”

The cohomology modules defined above have U i(Γ, R) = 0 for i > 1 ifR is any PID, just for dimension
reasons. However, we can ask what is U i(Γ, R) for i > 1 with R = C[x1, . . . , xn] a polynomial ring
for some n > 1.
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4.10 Avi Levy: “Moving between a single boundary vertex and a general set of
boundary vertices in electrical networks”

We have U1(Γ,Z) = Jac(G) when ∂G is a single vertex. How does U1(Γ,Z) change for more general
sets of boundary vertices? Let Γ = (G, ∂G) be a network with arbitrary boundary. For each partition Π
of ∂G we can set ΓΠ to be the network we get by collapsing all vertices in the same part into one vertex.
So in particular Γ{∂G} has only a single boundary vertex and thus U1(Γ{∂G},Z) is the sandpile group
of a graph (namely, the graph obtained from Γ by collapsing all boundary vertices into a single sink).
Is there some Galois connection coming from the poset of partitions of ∂G that interpolates between
sandpile groups and cohomology for electrical networks with arbitrary boundaries?
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